Prof Dr. Joao Seco, DKFZ Heidelberg

Physics/Biology of Radiation Therapy

BioMedical Physics in Radiation Oncology

j.seco@dkfz.de

Questions are welcome at any time

How to Treat Cancer With minimal side-effects

- Holy grail of oncology
- Identify characteristics that distinguish tumor cells from normal cells
- Design a <u>Monotherapy</u> that selectively ablates tumor cells

Some Biology...

Tissue organization and protection of the stem cell genome

The Biology of Cancer (© Garland Science 2007)

Patient Diagnostic Evaluation

Measuring biological processes at different scales

molecular imaging

What does a pathologist look for in biopsy tissue?

How does Cancer look like under the microscope?

What is Cancer ?

- is uncontrolled cell proliferation and cell rampant growth
- cancer may spread to other parts of the body
- over 100 different types, individual

Cancer cell of a lung tumor during cell proliferation

[2]

Theory of cancer formation:

(random) mutation levers out i.a.
programmed cell death
→ cells need to be removed / killed
"manually" for treatment

[1] Garak76, Suhadi Jorhaa'ir (https://commons.wikimedia.org/wiki/File:Zellteilung_normal_im_Gegensatz_zu_Krebs.svg), "Zellteilung normal im Gegensatz zu Krebs"
 [2] fineartamerica - Lung Cancer Cell Division. - Accessed from https://fineartamerica.com/featured/lung-cancer-cell-division-sem-steve-gschmeissner.html?product=metal-print on 12.02.2021. Lettering was adapted.

What is the relationship between tumor grade and patient survival?

Cancer - incidence

Stewart, B. W. K. P., and Christopher P. Wild. "World cancer report 2014." (2014).
 Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

[3] RKI, Report on cancer in Germany for 2013/2014, cancer registry data [4] RKI, Report on cancer in Germany for 2015/2016, cancer registry data

2017 New Cancer Sites

Estimated New Cases

			Males	Females		
Prostate	161,360	19%		Breast	252,710	30%
Lung & bronchus	116,990	14%		Lung & bronchus	105,510	12%
Colon & rectum	71,420	9%		Colon & rectum	64,010	8%
Urinary bladder	60,490	7%		Uterine corpus	61,380	7%
Melanoma of the skin	52,170	6%		Thyroid	42,470	5%
Kidney & renal pelvis	40,610	5%		Melanoma of the skin	34,940	4%
Non-Hodgkin lymphoma	40,080	5%		Non-Hodgkin lymphoma	32,160	4%
Leukemia	36,290	4%		Leukemia	25,840	3%
Oral cavity & pharynx	35,720	4%		Pancreas	25,700	3%
ver & intrahepatic bile duct	29,200	3%		Kidney & renal pelvis	23,380	3%
All Sites	836,150	100%		All Sites	852,630	100%

2017 Cancer Deaths

Estimated New Cases

			Males	Females		
Prostate	161,360	19%		Breast	252,710	30%
Lung & bronchus	116,990	14%		Lung & bronchus	105,510	12%
Colon & rectum	71,420	9%		Colon & rectum	64,010	8%
Urinary bladder	60,490	7%		Uterine corpus	61,380	7%
Melanoma of the skin	52,170	6%		Thyroid	42,470	5%
Kidney & renal pelvis	40,610	5%		Melanoma of the skin	34,940	4%
Non-Hodgkin lymphoma	40,080	5%		Non-Hodgkin lymphoma	32,160	4%
Leukemia	36,290	4%		Leukemia	25,840	3%
Oral cavity & pharynx	35,720	4%		Pancreas	25,700	3%
Liver & intrahepatic bile duct	29,200	3%		Kidney & renal pelvis	23,380	3%

Estimated Deaths

			Males	Fer
Lung & bronchus	84,590	27%		
Colon & rectum	27.150	9%		
Prostate	26,730	8%		2
Pancreas	22,300	7%		
Liver & intrahepatic bile duct	19,610	6%		
Leukemia	14,300	4%		
Esophagus	12,720	4%		
Urinary bladder	12,240	4%		
Non-Hodgkin lymphoma	11,450	4%		
Brain & other nervous system	9,620	3%		
All Sites	318,420	100%		

Females

Lung & bronchus	71,280	25%
Breast	40.610	14%
Colon & rectum	23,110	8%
Pancreas	20,790	7%
Ovary	14,080	5%
Uterine corpus	10,920	4%
Leukemia	10,200	4%
Liver & intrahepatic bile duct	9,310	3%
Non-Hodgkin lymphoma	8,690	3%
Brain & other nervous system	7,080	3%
All Sites	282,500	100%

Hallmark of Cancer "Warburg Effect"

06/03/2021 Page 15 j.seco@dkfz.de

Adequate oxygen As Oxygen Decreases

Early 20th Century

Observed that cancer cells had increased rates of glycolysis

Despite the availability of adequate oxygen levels

Aerobic glycolysis

Otto Heinrich Warburg German Physiologist

WARBURG EFFECT

Why do cancer cells activate glycolysis despite the presence of oxygen?

Treatment options

[1] A joint publication of the Robert Koch Institute and the German Cancer Associations (Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V.), 11th issue, 2017, accessed on 20.11.2018

i.seco@dkfz.de

dkfz.

- CURE leads survival
- 2. PALLIATIVE leads better quality of life

60% of all cancer patients survive more

- 10-year prognosis <1% pancreatic cancer
- 10-year prognosis ~84% prostate cancer

Radiation **From Small amounts** to Large Amounts

06/03/2021 Page 19 j.seco@dkfz.de

Natural radiation

Electromagnetic radiation - Photons

• But also: radio, light, microwaves, etc.

[1] !Original: PenubagVector: Victor Blacus (https://commons.wikimedia.org/wiki/File:Electromagnetic-Spectrum.svg), "Electromagnetic-Spectrum", https://creativecommons.org/licenses/by-sa/3.0/legalcode

Natural radiation

Particle radiation

Alpha radiation

[1]

- Alpha radiation helium nuclei
- Beta radiation electrons/positrons ٠
- Other nuclei/ions (e.g. cosmic radiation) •

Beta

radiation

[2]

β

neutron

р

 $\overline{\nu}_{
ho}$

Types of radioactive decay

[1] Inductiveload (https://commons.wikimedia.org/wiki/File:Alpha Decay.svq), "Alpha Decay", marked as public domain, more details on Wikimedia Commons: https://commons.wikimedia.org/wiki/Template:PD-self [2] Inductiveload (https://commons.wikimedia.org/wiki/File:Beta-minus Decay", marked as public domain, more details on Wikimedia Commons: https://commons.wikimedia.org/wiki/Template:PD-self [3] openstax CNX - Radioactive Decay. Accessed from https://cnx.org/contents/lbTLTDQM@1.6:RSg8dk2S@1/Radioactive-Decay on 12.02.2021

2 protons

2 neutrons

Radiation exposure in everyday life Effective Radiation Dose

- Generally known: body dose
- given and measured in Sievert
- considers the sensitivity of the respective organ and radiation type
- cosmic and terrestrial radiation
- medical and technical applications
- diverse loads (e.g. flight travels)

Banana equivalent dose:

0.4 gram potassium consists to 0.01% of the radioactive potassium isotope K-40 1000 bananas in 8 hours \rightarrow 0.1 mSv

Average dose: 4 mSv per year

DIRECT AND INDIRECT ACTION

The biologic effects of radiation result principally from damage to deoxyribonucleic acid (DNA), which is the critical target, as described

Why bother with carbon ions?

- Energy release is **localized** to a varying extent. ¹²C is 12 times heavier than p⁺
- Heavy ions generate locally more severe damage \rightarrow more difficult to repair

[1] Marx, V. (2014, April 4). Sharp shooters. 508. Nature, p. 137.

GOLD STANDARD: Cell Survival Curves

Figure 8.1. Radiation dose-response of human cancer cells in 1970. [Reproduced from Puck and Marcus, 1956. by copyright permission of The Rockefeller University.

tissue → trypsin → single cell suspension → seeding →(medium+incubation) →crisis →established

06/03/2021 Page 25

Cell Survival Curves

Survival and radiosensitivity in various systems

dkfz.

.seco@dkfz.de

06/03/2021

Cell Survival Curves

FIGURE 3.8 A: Compilation of survival curves for asynchronous cultures of several cell lines of human and rodent origin. Note the wide range of radiosensitivity (most notably the size of the shoulder) between mouse EMT6 cells, the most resistant, and two neuroblastoma cell lines of human origin (the most sensitive). The cell survival curve for mitotic cells is very steep, and there is little difference in radiosensitivity for cell lines that are very different in asynchronous culture. (Data compiled by Dr. J.D. Chapman, Fox Chase Cancer Center, Philadelphia.) B: DNA purified from various cell lines (survival curves shown in Fig. 3.8A) 18 hours after irradiation with 10 Gy and electrophoresed for 90 minutes at 6 V/cm. Note the broad variation in the amount of "laddering"which is characteristic of an apontotic

Linear Quadratic Model (LQM)

FIGURE 3.3 Shape of survival curve for mammalian cells exposed to radiation. The fraction of cells surviving is plotted on a logarithmic scale against dose on a linear scale. For α -particles or low-energy neutrons (said to be densely ionizing), the dose-response curve is a straight line from the origin (i.e., survival is an exponential function of dose). The survival curve can be described by just one parameter, the slope. For x- or γ -rays (said to be sparsely ionizing), the dose-response curve has an initial linear slope, followed by a shoulder; at higher doses, the curve tends to become straight again. **A:** The linear quadratic model. The experimental data are fitted to a linear-quadratic function. There are two components of cell killing: One is proportional to dose (αD); the other is proportional to the square of the dose (βD^2). The dose at which the linear and quadratic components are equal is the ratio α/β . The linear-quadratic curve bends continuously but is a good fit to experimental data for the first few decades of survival. **B:** The multitarget model. The curve is described by the initial slope (D_1), the final slope (D_0), and a parameter that represents the width of the shoulder, either n or D_a .

Oxygen Effect and Reoxygenation

06/03/2021

Pag

Oxygen Effect and LET Dependency

Typical LET Values

Response to Ionizing Radiation Depends on Radiation Quality

 LET, linear energy transfer = average energy imparted to a medium by a charged particle per unit track length (keV/µm)

- Low LET: sparsely ionizing (x-rays, γ-rays)

- High LET: densely ionizing (α-particles, heavy charged ions)

Radiation	LET <u>(</u> keV/ <u>µ</u> m)
Cobalt-60 γ-rays	0.2
250 kVp X-rays	2.0
10 MeV protons	4.7
150 MeV protons	0.5
14 MeV neutrons	12 (track average)
	100 (energy average
290 MeV Carbon ions	12
2.5 MeV α-particles	166
2 GeV Iron ions	1,000

Process of Reoxygenation

Linear Energy Transfer (LET) and RBE

Radiation Type/Quality—Relative Biological Effectiveness (RBE)

i.seco@dkfz.de

$$RBE = \frac{D_{ref}}{D_{particle}}_{iso-effect}$$

- •RBE depends on:
 - Dose
 - Particle Type
 - Cell Line
 - Biological Endpoint

•LET (Reminder:
$$LET_{\Delta} = \frac{dE}{dl_{\Delta}}$$

Linear Energy Transfer (LET) and RBE Quantitative LET-dependency of RBE

Linear Energy Transfer (LET), RBE and OER

OER Dependency on LET

Summary

- cancer diseases are characterized by uncontrolled growth of mutated cells
- radiation transfers energy to the tissue in form of elementary physical interactions
 → radiation dose
- energy release ionizes the tissue
 - → breaks down chemical bounds or forms new ones
 - \rightarrow DNA damage
 - \rightarrow cell death
- by artificially generating radiation, we can combat cancer cells in a targeted manner
- not without risk for the healthy tissue
 - \rightarrow but high conformity when applying particle beams

• Questions?

[1] Gage Skidmore from Peoria, AZ, United States of America (https://commons.wikimedia.org/wiki/File:Captain_Jack_Sparrow_(5763467649).jpg), "Captain Jack Sparrow (5763467649)", https://creativecommons.org/licenses/by-sa/2.0/legalcode

Cancer - incidence

Cancer incidence worldwide

14 million new cases of cancer in 2012 [1]
8 million deaths due to cancer in 2012 [1]
19 million new cases of cancer in 2020 [2]
10 million deaths due to cancer in 2020 [2]
2.3 million deaths

28.4 million new cases of cancer in **2040** [2] How many deaths in 2040?

Dark blue: Cancer is the leading cause of premature death

Cancer incidence national

- 500 000 new cases of cancer in Germany every year [3,4], 2.5 times the population of Mainz
- rising tendency due, among other things, to demographic developments

Stewart, B. W. K. P., and Christopher P. Wild. "World cancer report 2014." (2014).
 Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

[3] RKI, Report on cancer in Germany for 2013/2014, cancer registry data [4] RKI, Report on cancer in Germany for 2015/2016, cancer registry data

