Synchrotron Radiation Light Sources

Lenny Rivkin

Paul Scherrer Institute (PSI)

and Swiss Federal Institute of Technology Lausanne (EPFL)

Accelerator based Photon Sources, L. Rivkin, Palanga, Lithuania, Baltic School of Physics, August 9/10, 2023

PAUL SCHERRER INSTITUT

Paul Scherrer Institute

SwissFEL

Swiss Light Source

Instruments development:

400 years of discoveries with "telescopes" and "microscopes"

Accelerator driven applications to meet the needs of society

- Advanced instruments for basic and applied science
- Analysis of physical, chemical and biological materials
- Modification of physical, chemical and biological properties of matter
- Medical: diagnostics, treatment and targeted drug design
- Security: cargo scanning, IT hardware
- Environment
- Energy

BASIC RESEARCH

The role of accelerators in Physical and Life Sciences

"Instruments have a life of their own. They do not merely follow theory; often they determine theory, because instruments determine

what is possible, and what is possible determines to a large extent what can be thought. The telescope, the microscope, the chronograph, the photograph: all gave rise to a blossoming of theoretical understanding not possible before their invention"

> Hankins & Silverman, Instruments and the Imagination

24 Nobel Prizes in Physics that had direct contribution from accelerators

Year	Name	Accelerator-Science Contribution to Nobel Prize-	1980	James W. Cronin and	Cronin and Fitch concluded in 1964 that CP (charge-
1939	Ernest O. Lawrence	Lawrence invented the cyclotron at the University of Californian at Berkeley in 1929 [12].		Val L. Fitch	mesons based upon their experiments using the Brookhaven Alternating Gradient Synchrotron [28].
1951 1952	John D. Cockcroft and Ernest T.S. Walton Felix Bloch	Cockcroft and Walton invented their eponymous linear positive-ion accelerator at the Cavendish Laboratory in Cambridge, England, in 1932 [13]. Bloch used a cyclotron at the Crocker Radiation	1981	Kai M. Siegbahn	Siegbahn invented a weak-focusing principle for betatrons in 1944 with which he made significant improvements in high-resolution electron spectroscopy [20]
		Laboratory at the University of California at Berkeley in his discovery of the magnetic moment of the neutron in 1940 [14].	1983	William A. Fowler	Fowler collaborated on and analyzed accelerator-based experiments in 1958 [30], which he used to support his
1957	Tsung-Dao Lee and Chen Ning Yang	Lee and Yang analyzed data on K mesons (θ and τ) from Bevatron experiments at the Lawrence Radiation Laboratory in 1955 [15], which supported their idea in 1956 that parity is not conserved in weak interactions [16].	1984	Carlo Rubbia and Simon van der Meer	hypothesis on stellar-fusion processes in 1957 [31]. Rubbia led a team of physicists who observed the intermediate vector bosons W and Z in 1983 using CERN's proton-antiproton collider [32], and van der Meer developed much of the instrumentation needed
1959	Emilio G. Segrè and Owen Chamberlain	Segrè and Chamberlain discovered the antiproton in 1955 using the Bevatron at the Lawrence Radiation Laboratory [17].	1986	Ernst Ruska	for these experiments [33]. Ruska built the first electron microscope in 1933 based
1960	Donald A. Glaser	Glaser tested his first experimental six-inch bubble chamber in 1955 with high-energy protons produced by	1099	Leen M. Ledennen	upon a magnetic optical system that provided large magnification [34].
1961	Robert Hofstadter	the Brookhaven Cosmotron [18]. Hofstadter carried out electron-scattering experiments on carbon-12 and oxygen-16 in 1959 using the SLAC	1988	Melvin Schwartz, and Jack Steinberger	muon neutrino in 1962 using Brookhaven's Alternating Gradient Synchrotron [35].
		nac and thereby made discoveries on the structure of ucleons [19].	1989	Wolfgang Paul	Paul's idea in the early 1950s of building ion traps grew out of accelerator physics [36].
1963	Maria Goeppert Mayer	Goeppert Mayer analyzed experiments using neutron beams produced by the University of Chicago cyclotron in 1947 to measure the nuclear binding marries of key theory and yappane [20] which lad to har	1990	Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor	Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37].
1967	Hans A. Bethe	discoveries on high magic numbers in 1948 [21]. Bethe analyzed nuclear reactions involving accelerated protons and other nuclei whereby he discovered in	1992	Georges Charpak	Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator- based testing at CERN [38].
1968	Luis W. Alvarez	1939 how energy is produced in stars [22].	1995	Martin L. Perl	Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39].
		using his fifteen-inch hydrogen bubble chamber and high-energy proton beams from the Bevatron at the Lawrence Radiation Laboratory [23].	2004	David J. Gross, Frank Wilczek, and H. David Politzer	Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973 based upon results from the SLAC linac on electron-
1976	Burton Richter and Samuel C.C. Ting	Richter discovered the J/ Ψ particle in 1974 using the SPEAR collider at Stanford [24], and Ting discovered the J/ Ψ particle independently in 1974 using the Brookhaven Alternating Gradient Synchrotron [25].	2008	Makoto Kobayashi and Toshihide Maskawa	proton scattering [40]. Kobayashi and Maskawa's theory of quark mixing in 1973 was confirmed by results from the KEKB accelerator at KEK (High Energy Accelerator Research
1979	Sheldon L. Glashow, Abdus Salam, and Steven Weinberg	Glashow, Salam, and Weinberg cited experiments on the bombardment of nuclei with neutrinos at CERN in 1973 [26] as confirmation of their prediction of weak neutral currents [27].			Organization) in Tsukuba, Ibaraki Prefecture, Japan, and the PEP II (Positron Electron Project II) at SLAC [41], which showed that quark mixing in the six-quark model is the dominant source of broken symmetry [42].

2013: François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

20 Nobels with X-rays

Chemistry

1936 Peter Debye

1962 Max Perutz and Sir John Kendrew

1976 William Lipscomb

1985 Herbert Hauptman and Jerome Karle

1988 Johann Deisenhofer, Robert Huber and Hartmut Michel

1997 Paul D. Boyer and John E. Walker

2003 Peter Agre and Roderick Mackinnon

2009 V. Ramakrishnan, Th. A. Steitz, A. E. Yonath

2012 Robert J. Lefkowitz and Brian K. Kobilka

Physics

1901 Wilhelm Rontgen
1914 Max von Laue
1915 Sir William Bragg and son
1917 C. G. Barkla
1924 Manne Siegbahn
1927 A. H. Compton
1981 Kai Siegbahn

Medicine

1946 Hermann Muller

1962 Frances Crick, James Watson and Maurice Wilkins

1979 Alan Cormack and Godfrey Hounsfield

Wavelength continuously tunable !

Imaging things on all length and time scales using accelerators,

e.g. latest X-Ray and computational technologies (developed at accelerators)

Materials

Modern day materials

Accelerators had an impact on a wide range of materials

Modern day materials

Synchrotron Light Sources: about 50 storage ring based

The «brightness» of a light source

Easter morning 1900: 5th / Easter morning 1913: 5th Ave, New York City. the automobile. Spot the horse.

Brightness: disruptive change

Log

- X-ray Tubes
- Storage Rings •
- FELs •
- ? Compact sources ?

Sources of Synchrotron Radiation

Bright beams of particles: phase space density

Incoherent, spontaneous emission of light:

Coherent, stimulated emission of light

Large phase space

Undulators

$$T_{obs} = T_{emit} (1 - \beta)$$

$$\lambda_{light} pprox rac{\lambda_u}{2\gamma^2}$$

3 types of storage ring sources:

3 types of storage ring sources:

3 types of storage ring sources:

Anatomy of a light source

Undulator line width

Undulator of infinite length

Finite length undulator
 radiation pulse has as many periods as the undulator

the line width is

Due to the electron energy spread

Undulator based beamline

Synchrotron storage ring

Undulator radiation

$$\lambda = \frac{\lambda_u}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)$$

Particle beam emittance

X-ray emittance from electron source: a convolution of electron and photon phase space

Brightness =
$$\frac{\Phi}{(2\pi)^2 \Sigma_x \Sigma_{x'} \Sigma_y \Sigma_{y'}}$$
 $\Sigma^2 = \sigma_e^2 + \sigma_\gamma^2$ $\sigma_\gamma = \sqrt{\frac{\lambda}{L}}$ $\sigma_\gamma = \frac{\sqrt{\lambda L}}{4\pi}$

Undulator radiation from 6 GeV beam with zero emittance, energy spread (example ESRF)

g 0--1 ----2 ----2 -1 0 2 mm

Emittance 4 nm·rad, 1% coupling, finite energy spread

Diffraction limited storage rings

HITTING THE DIFFRACTION LIMIT

BRIGHTNESS:

Light of wavelength λ focused to spot size Δx will diffract with angle $\Delta \psi = \sim \lambda / \Delta x$

Diffraction limited light sources

LEAPS is the largest consortium of analytical facilities world-wide and further expanding its service to an interdisciplinary European user community

19 facilities - **16** institutions - **10** countries

- > 300 operating End Stations
- > 1.000.000 h beamtime /year
- > 7'000 publications/year
- > 15 spin off companies
- > 35.000 users from all EU & beyond researchers from all research areas

Construction and Operation (~ 800 M€/year) through national funding Investment: 1.6 B€; 1.5 B€ upgrade programs

Synchrotrons

ESRF & PETRA III 6 GeV

Alba, Diamond, Elettra, Max IV, SLS, Soleil 2-3 GeV

ASTRID, BESSY II, DAFNE, Max IV, **PTB**, Solaris < 2 GeV

European XFEL

FELs from Hard X rays to IR

FERMI

FELBE

FLASH

FELIX

High Temperature Superconductors (HTS) example of technology development for fusion and accelerators HTS superconducting magnet technology: developments for fusion (Tokamak Energy Ltd., UK)

Using non-insulated HTS tapes:

18.2 Tesla @ 12 K field reached recently

Recent claims from Korea of ambient temperature and pressure LK-99 superconductor... (many claims of room temperature, high pressure s.c.)

HTS superconducting magnet technology undulators

Using bulk HTS material: can reach 2 Tesla for very short period magnets

Put the structure into a solenoid magnet, cool it and trap the field

Transverse coherence

- High brightness gives coherence
- Wave optics methods for X-rays (all chapters in Born & Wolf)

Holography

The knee of a spider

phase contrast imaging

Phase contrast X-Ray imaging: improved soft tissue contrast

X-ray Radiography of a fish

a (+ details c , e, g)

Phase contrast Microscopy

(+ details d, f, h)

D

Imaging for Life Science Applications

Source photon degeneracy parameter

Photons per spatial and temporal mode

$$\delta = B \lambda^3 / 4c = F_c \tau_c$$

Muscles and tracheal network *during* flight

R. Mokso et al., Scientific Reports 5 8727 (2015)

Accelerator based Photon Sources, L. Rivkin, Palanga, Lithuania, Baltic School of Physics, August 9/10, 2023

Fake news?

Intel Core Pentium G3260 (3300) Dual Core, 22 nm

Bloomberg Businessweek

The Big Hack

Holler et al., Nature 543, 402–406 (16 March 2017)

Architecture of artificial and natural intelligence on all scales

Nature Electronics 2, 464-470 (2019)

Brain of a mouse in 3-D

Miettinen et al.

PAUL SCHERRER INSTITUT SLS 2.0: upscaling Swiss Light Source flux $\mathcal{B} = -$ Brilliance emittance 10⁻⁹ PETRAIN 10^{-10} 1000 Circumference [m] HUMAN HAIR (0.017 millimeters) Beam profile: less emittance SLS and more photons 2021 2022 2023 2024 2025 2026 **OCTOBER 2023 DECEMBER 2020 JULY 2025**

Swiss Parliament agrees

on the Swiss Dispatch

on Promotion of ERI.

Start of construction.

Dark period 15 months

Restart of User

Operation

Page 49

PAUL SCHERRER INSTITUT PAUL SCHERRER INSTITUT POwer economy SLS2.0 vs. SLS

More radiated X-ray power for users Less electricity consumption

 $\begin{array}{ll} SLS \rightarrow SLS2.0\\ E_{e^-} & 2.4~GeV \rightarrow 2.7~GeV\\ P_{SR} & 310~GeV \rightarrow 365~kW\\ W_{elec}/y & 24~GWh \rightarrow 17~GWh \end{array}$

Key savings:

Electromagnets → Permanent magnets Klystrons → Solid state amplifiers standard pumps → modern pumps for cooling

Free Electron Lasers

COHERENT EMISSION BY THE ELECTRONS

Intensity $\propto N$

INCOHERENT EMISSION

Intensity \propto N²

COHERENT EMISSION

FIRST DEMONSTRATIONS OF COHERENT EMISSION (1989-1990)

Fig. 4. Dependence of SR intensity on the beam current at $\lambda = 400 \ \mu m$ and $\lambda = 520 \ nm$ for the long pulse/short bunch beam. The ordinate is given on the left-hand side for $\lambda = 400 \ \mu m$ and on the right for $\lambda = 520 \ nm$. The two lines show the linear and quadratic relations to the beam current. The beam current is converted to the average number of electrons in a bunch on the upper side.

180 MeV electrons

T. Nakazato et al., Tohoku University, Japan

FIG. 3. The intensity of the CR measured for the bandwidths indicated with horizontal bars, the spectrum calculated according to Eq. (1) for 10% bandwidth (solid line), and the intensity expected for the complete coherence over the bunch for 10% bandwidth (open circle).

30 MeV electrons

J. Ohkuma et al., Osaka University, Japan

MUCH HIGHER BRIGHTNESS CAN BE REACHED WHEN THE ELECTRONS COOPERATE

THE ELECTRON BEAM SHOULD BE ~ 1 Å AS SMALL AS THE X-RAY WAVELENGTH!

Paul Scherrer Institute

SwissFEL

Free Electron Laser Keywords:

R. Bakker

Electrons slip behind EM wave by λ_1 per undulator period (λ_u)

■ Due to sustained interaction, some electrons lose energy, while others gain → energy modulation at λ_1 $\Lambda \Lambda \Lambda \Lambda$

- e^- losing energy slow down, and e^- gaining energy catch up \rightarrow density modulation at λ_1 (microbunching) $\Lambda \Lambda \Lambda \Lambda \Lambda$
- Microbunched beam radiates coherently at *λ*₁, enhancing the process → exponential growth of radiation power

X-Ray Free Electron Lasers

Spin-off product from basic research

J. Hastings

1878: E. Muybridge at Stanford Tracing motion of animals by spark photography

L. Stanford

E. Muybridge, Animals in Motion, ed. by L. S. Brown (Dover Pub. Co., New York 1957).

FELs and ERLs COMPLEMENT the Ring sources

After H.-D. Nuhn, H. Winick

Compact accelerators: sources of photons, neutrons, electrons etc.

Compact accelerators

MHz Ring Cyclotron

12 GHz CLIC

Laser

THz?

5(

AC

HIP

Disruptive storage rings technology change: a much brighter compact sources e.g. for shorter wavelength lithography

ENGINES OF DISCOVERY

A Century of Particle Accelerators Andrew Sessler • Edmund Wilson

« Le seul véritable voyage … ce ne serait pas d'aller vers de nouveaux paysages, mais d'avoir d'autres yeux, de voir l'univers avec les yeux d'un autre, de cent autres, de voir les cent univers que chacun d'eux voit, que chacun d'eux est. »

(Marcel Proust, La Prisonnière, 1923)

"The real voyage of discovery consists not in seeking new landscapes but in having new eyes"

Marcel Proust