High-Density QCD with Proton and Ion Beams

Aleksas Mazeliauskas

Institute for Theoretical Physics, Heidelberg University

August 9, 2023

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Aleksas Mazeliauskas, aleksas.eu

Motivation

Two strategies to study fundamental interactions

- HEP: concentrate higher energy in smaller and smaller volume.
- HIP: distribute high energy or high nucleon density over a relatively large volume. T.D. Lee, 1974, Bear Mountain workshop

$$e \gg
ho_0 c^2 pprox 0.1 {\rm GeV/fm}^3$$
 and $V \gg 1 {\rm fm}^3$

Condensed matter phenomena at extreme conditions

"More is different" – P.W. Anderson (1972)

QED - Abelian gauge theory

QCD - non-Abelian gauge theory

Unique chance to study the many-body dynamics of a strongly coupled non-Abelian gauge theory: new states of matter, thermalisation, material properties, phase transitions,...

Where can we find high-density QCD matter?

High-energy ion (Pb, Au) and proton colliders

Upcoming: electron-ion collider (BNL), antitproton-ion facility (GSL)

Aleksas Mazeliauskas

How to make Quark-Gluon Plasma at home?

Collide clumps of nuclear mater to melt them into a Quark-Gluon Plasma (QGP).

Conditions for QGP exists for less than 10^{-22} s — need to reconstruct the collision history.

Real heavy-ion event display

 ϕ – azimuthal angle, θ,η – longitudinal direction

- Charged hadrons per unit rapidity $dN_{\rm ch}/d\eta\sim 2000$, c.f. $pp~dN_{\rm ch}/d\eta\sim 5$
- $\blacksquare~N_{\rm ch}\sim 25000,$ mostly soft pions $p_T<2{\rm GeV},$ but also strange and charmed hadrons, light and exotic nuclei

Aleksas Mazeliauskas

Real heavy-ion event display

 ϕ – azimuthal angle, θ,η – longitudinal direction

- Charged hadrons per unit rapidity $dN_{\rm ch}/d\eta\sim 2000$, c.f. $pp~dN_{\rm ch}/d\eta\sim 5$
- $\blacksquare~N_{\rm ch}\sim 25000,$ mostly soft pions $p_T<2{\rm GeV},$ but also strange and charmed hadrons, light and exotic nuclei

Aleksas Mazeliauskas

Experimental LHC program with heavy (and light) ions

- ~ 1 month/year of heavy-ion datataking by ALICE, ATLAS, CMS and LHCb.
- Run 3+4: high-statistics p+Pb, Pb+Pb (special oxygen run in 2024).
- Surprising "heavy-ion" physics in pp collisions
- Proposal for next-generation heavy-ion detector ALICE 3 in Run 5.

See LHC Yellow report (2018) [1] for detailed description of LHC HIP program.

QCD thermodynamics in a box

Asymptotic freedom at high temperature and density QCD matter

In vaccum:

- colour neutral hadrons (confinement)
- mass from chiral symmetry breaking ($m_p=938\,{
 m MeV}$ vs $2m_u+m_d\sim 10\,{
 m MeV}$)
- \blacksquare At high temperature or density $\alpha_s \rightarrow 0$
 - quarks and gluons become deconfined, no bound states
 - new state of matter quark-gluon plasma (QGP)

What is the transition between hadronic matter and QGP? What are QGP properties?

Consider baryon symmetric matter (baryon chemical potential $\mu_B = 0$) at temperature T. What is energy density e dependence on T?

■ Low temperature: dominant degrees of freedom - 3 light pions

energy density
$$e = \nu_{\pi} \int \frac{d^3p}{(2\pi)^3} \frac{p}{e^{p/T} - 1} = \frac{\pi^2}{30} (3)T^4 \approx T^4.$$

aleksas.eu

Consider baryon symmetric matter (baryon chemical potential $\mu_B = 0$) at temperature T. What is energy density e dependence on T?

■ Intermediate *T*: excite hundreds of hadron resonance states (see PDG tables).

$$\label{eq:hard_HR} {\rm fitted\ mass\ spectrum} \quad \rho_{\rm HR}(m) = \frac{c}{(m^2+m_0^2)^{5/4}} \exp(\frac{m}{T_H}) \quad T_H \approx 160 \, {\rm MeV}.$$

(pre-QCD prediction) breakdown of hadronic description at the Hagedron temperature.

Consider baryon symmetric matter (baryon chemical potential $\mu_B = 0$) at temperature T. What is energy density e dependence on T?

High temperature: free gas of 3 massless quarks (up, down, strange) and gluons

Perturbative corrections converge slowly \implies need non-perturbative methods.

Aleksas Mazeliauskas

aleksas.eu

Consider baryon symmetric matter (baryon chemical potential $\mu_B = 0$) at temperature T. What is energy density e dependence on T?

High temperature: free gas of 3 massless quarks (up, down, strange) and gluons

$$e = \frac{\pi^2}{30} \big(\underbrace{2}_{\text{polarization}} \times \underbrace{8}_{\text{colour}} + \underbrace{2}_{\text{anti-/particle}} \times \underbrace{2}_{\text{spin}} \times \underbrace{3}_{\text{colour}} \times \underbrace{3}_{\text{flavour}} \frac{7}{8} \big) T^4 \approx 16T^4.$$

Perturbative corrections converge slowly \implies need non-perturbative methods. Expect change of e/T^4 from ~ 1 to ~ 16 going from hadrons to QGP. Is there a jump?

Aleksas Mazeliauskas

Lattice QCD at finite temperature

Non-perturbative finite temperature QCD computations on a lattice

$$U(0,t) = e^{-i\hat{H}t} \quad t \to -i\tau, 0 < \tau < 1/T \quad Z = \sum_{\psi} \langle \psi | e^{-\hat{H}/T} | \psi \rangle \,.$$

Applicable to static quantities (e.g. thermodynamics), only $\mu_B = 0$ (sign problem).

Transition from hadrons to QGP is a crossover at $T_c \approx 155 \,\mathrm{MeV}, e_c \approx 0.3 \,\mathrm{GeV/fm}^3$.

Aleksas Mazeliauskas

Phase diagram of QCD matter

- Matter/anti-matter symmetry in high energy collisions $\Longrightarrow \mu_B = 0$
- At low energy collisions more baryon stoping $\Longrightarrow \mu_B > 0$.
- Neutron star mergers \implies large μ_B , low T.

What are the properties of baryon-rich high-density QCD matter ($\mu_B > 0$)

First order transition line at $\mu_B > 0$? Critical end point (CEP)?

- Beam Energy Scan at RHIC; SPS at CERN; FAIR at GSI
- Lattice extrapolations from $\mu_B = 0$.

Matter properties inside neutron stars/mergers.

- Constraints on equation of state from gravitation wave observations.
- Perturbation theory in cold quark matter.

In this lecture we will focus on QGP properties at $\mu_B \approx 0$ studied at LHC.

Quark Gluon Plasma Hall of Fame

QGP in heavy-ion collisions is one of most extreme phases of matter:

- \blacksquare Hottest matter created $T\sim 10^{12}\,{\rm K}$
- \blacksquare Most perfect fluid $\eta/s \sim 0.08$
- \blacksquare Most vortical fluid $\omega \sim 10^{22}\,{\rm s}^{-1}$

- How does the hot and dense QCD matter thermalise?
- How does collective behaviour emerge from interactions of a few particles?
- What are the material properties of Quark Gluon Plasma?

See reviews: Busza, Rajagopal, van der Schee (2018) [5], Nagle, Zajc (2018) [6], Berges, Heller, AM, Venugopalan (2020) [7]

aleksas.eu

Phases of heavy-ion collisions

Co-moving (Bjorken or Milne) coordinates $n = -\ln(\tan(\theta/2))$ $\Delta \Phi$ 2 (0≈15°) t i = 1 (θ≈45°) rapidities $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$ $\eta_{\text{pseudo}} = \frac{1}{2} \ln \left(\frac{|\mathbf{p}| + p_z}{|\mathbf{p}| - p_z} \right)$ $\eta_{\text{space-time}} = \frac{1}{2} \ln \left(\frac{t+z}{t-z} \right)$ $\tau = \eta \text{ co-moving coordinates}$ $\tau = \sqrt{t^2 - z^2}$ $v^z = \tanh \eta$ $ds^2 = -d\tau^2 + dx^2 + dy^2 + \tau^2 d\eta^2$ Pb

We will discuss mid-rapidity region $\eta \approx 0$ (take $\eta_{\text{space-time}} \approx \eta_{\text{pseudo}} \approx y$).

Relativistic viscous hydrodynamics

Ideal hydrodynamics

• Energy-momentum tensor for ideal fluid at rest:

$$T_{\mathsf{rest}}^{\mu\nu} = \begin{pmatrix} e & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \implies \Lambda_{\rho}^{\mu}(u)\Lambda_{\sigma}^{\nu}(u)T_{\mathsf{rest}}^{\rho\sigma} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu})$$

• e is relativistic energy density, equation of state p(e), u^{μ} fluid 4-velocity, $u^{\mu}u_{\mu} = -1$.

The energy-momentum conservation is written

$$\partial_{\mu}T^{\mu\nu} = 0$$

Ideal equations of motion in a fluid rest-frame

$$\partial_t e = -(e+p)\vec{\nabla}i$$
$$\partial_t \vec{v} = -\frac{\vec{\nabla}p}{e+p}$$

• Change in energy is driven by expansion $\theta = \partial_{\mu} u^{\mu} = \vec{\nabla} \vec{v}!$

• Change in velocity driven by gradients in pressure $\vec{\nabla}p!$

Aleksas Mazeliauskas

Bjorken solution

- Let's find a hydro solution in Bjorken coordinates
- Fluid velocity $u^{\mu} = (1, 0, 0, 0)$, $\theta = \partial_{\mu} u^{\mu} = \frac{1}{\tau}$
- Energy density evolution

$$\frac{\partial e}{\partial \tau} = -\frac{e+p}{\tau}.$$

• For pressureless (free-streaming) expansion p = 0

$$e = e_0 \left(\frac{\tau_0}{\tau}\right).$$

• For ideal (conformal) QGP $p = \frac{1}{3}e$

$$e = e_0 \left(\frac{\tau_0}{\tau}\right)^{4/3}$$

Faster decrease due to longitudinal work

$$ds^{2} = -d\tau^{2} + dx^{2} + dy^{2} + \tau^{2} d\eta^{2}.$$

$$v^{z} = \frac{z}{t} = \tanh \eta.$$

$$\tau = t \quad \text{at} \quad \eta = 0.$$

$$v^{z} = \frac{z}{t} = \tanh \eta.$$

$$\tau = t \quad \text{at} \quad \eta = 0.$$

$$v^{z} = \frac{z}{t} = \tanh \eta.$$

$$\tau_{\text{region of number}}$$

$$v^{z} = \frac{z}{t} = \tanh \eta.$$

$$\tau_{\text{region of number}}$$

$$v^{z} = \frac{z}{t} = \tanh \eta.$$

FIG. 3. Space-time diagram of longitudinal evolution of the quark-gluon plasma.

Bjorken (1982) [8]

Relativistic viscous hydrodynamics

Gradient corrections to the energy momentum tensor

 $T^{\mu\nu}_{1st} = T^{\mu\nu}_{\rm ideal} + \Pi(g^{\mu\nu} + u^{\mu}u^{\nu}) + \pi^{\mu\nu}$

Viscous corrections: allowed gradients in fluid field

 $\begin{array}{ll} {\rm shear \ tensor} & \pi^{\mu\nu} = -\eta \partial^{(\mu} u^{\nu)} \\ {\rm bulk \ pressure} & \Pi = -\zeta \partial_{\mu} u^{\mu} \end{array}$

- η shear viscosity, ζ bulk viscosity, positive quantities, properties of the medium.
- Effect of viscous corrections for 1D boost-invariant expansion (e + p = sT)

$$\frac{\partial e}{\partial \tau} = -\frac{e+p-\frac{4}{3}\frac{\eta}{\tau}-\frac{\zeta}{\tau}}{\tau} = -\frac{e+p}{\tau}\left(1-\frac{4}{3}\frac{\eta/s}{T\tau}-\frac{\zeta/s}{T\tau}\right).$$

Energy drops slower in viscous fluid (entropy production).

• At high temperature QCD ($g \ll 1$): $\eta/s \approx 5.11/(g^4 \log \frac{2.4}{g})$

For infinitely strongly coupled supersymmetric theories: $\eta/s = \frac{1}{4\pi} \approx 0.08$ Viscosity per entropy $\eta/s, \zeta/s$ are key transport properties of QGP. Experimental signals of QGP formation: Collective flow

Transverse geometry and centrality

see Miller, Reygers, Sanders and Steinberg (2007) [9]

Not all nucleons participate in a collision.

- Monte-Carlo Glauber model of nucleons inside nuclei
- More colliding nucleons N_{part} if b is small.
- Larger $N_{\text{part}} \Longrightarrow$ more produced particles.
- Order events in multiplicity (centrality) classes
- 0-5% centrality \implies most head on collisions.

Strong correlation between initial geometry and particle multiplicity \implies select events with different geometry/size.

Multiparticle collective flows

Produced particles show significant angular modulations v_n in the azimuthal angle ϕ

Collective particle flow is explained by pressure gradient driven transverse QGP expansion.

aleksas.eu

Two-particle correlations — near-side and away-side ridges

Practical way of quantifying collective flows - two-particle correlation function

$$\left\langle \frac{dN}{d\phi_1} \frac{dN}{d\phi_2} \right\rangle \propto 1 + 2\sum_n v_n^2 \cos(n\Delta\phi).$$

Also generalizes to multi-particle correlations (8-particle v_n 's measured).

Collective flow correlations are long-ranged $|\Delta \eta| > 1$ – must be sourced by initial state.

aleksas.eu

Centrality and momentum dependence of flow coefficients

- Strong elliptic flow in mid-central events \implies overlap geometry
- v_3, v_4 with weak centrality dependence \Longrightarrow fluctuations in geometry
- Mass ordering of $v_n(p_T) \Longrightarrow$ radial flow velocity $p_T \sim mv_T$

Standard hydrodynamic model of little Big Bang

- Multi-stage 2D/3D viscous hydrodynamic codes are widely available.
- Initial conditions and transport properties have to be constrained by data.

QGP properties from Bayesian parameter estimation

- \blacksquare Thousands of sample points in parameter space \times thousands of events
- Construct the posterior distributions for model parameters

$$\underbrace{P(\mathsf{parm}_i|\mathsf{data})}_{\mathsf{posterior}} \sim \underbrace{P(\mathsf{data}|\mathsf{parm}_i)}_{\mathsf{likelihood}} \underbrace{P(\mathsf{parm}_i)}_{\mathsf{prior}}.$$

$$P(\mathsf{data}|\mathsf{parm}_i) \sim \exp\left[-\Delta_i(\Sigma^{-1}) \cdot \Delta_i\right] \quad \Delta = \mathsf{data} - \mathsf{model}$$

Extracted physical parameters of QGP, e.g. $\eta/s \sim 0.08 - 0.2$ – smallest of all fluids.

Aleksas Mazeliauskas

Summary of the first lecture

High-density QCD with ion and proton beams – an alternative way to study strong force.

- Emergent many-body QCD phenomena in heavy-ion collisions
 - De-confined state of quarks and gluons at $T>155\,{\rm MeV}.$
 - Fast QCD thermalization and applicability of hydrodynamics.
 - Hydrodynamic flow of QGP (small $\eta/s \Longrightarrow$ strongly interacting fluid)
- Collective multi-particle flows key signature of medium formation.
- Heavy-ion collision is a multi-stage process:
 - Initial state (nuclear geometry, nucleonic fluctuations, strong QCD fields (CGC))
 - Equilibration (kinetic theory, fast emergence of hydrodynamics)
 - Hydrodynamic expansion (viscous fluid with small $\eta/s, \zeta/s$)
 - Freeze-out and hadronic cascade (rescatterings and decays)
- Advanced hydrodynamic models predict a large range of soft hadronic observables.

Bibliography I

[1] Z. Citron et al.

Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams.

CERN Yellow Rep. Monogr., 7:1159-1410, 2019, 1812.06772.

- [2] P. A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.
- [3] A. Bazavov et al. Equation of state in (2+1)-flavor QCD. *Phys. Rev. D*, 90:094503, 2014, 1407.6387.
- [4] Heng-Tong Ding, Frithjof Karsch, and Swagato Mukherjee. Thermodynamics of strong-interaction matter from Lattice QCD. Int. J. Mod. Phys. E, 24(10):1530007, 2015, 1504.05274.
- [5] Wit Busza, Krishna Rajagopal, and Wilke van der Schee. Heavy Ion Collisions: The Big Picture, and the Big Questions. Ann. Rev. Nucl. Part. Sci., 68:339–376, 2018, 1802.04801.
- [6] James L. Nagle and William A. Zajc. Small System Collectivity in Relativistic Hadronic and Nuclear Collisions. Ann. Rev. Nucl. Part. Sci., 68:211–235, 2018, 1801.03477.
- Jürgen Berges, Michal P. Heller, Aleksas Mazeliauskas, and Raju Venugopalan. Thermalization in QCD: theoretical approaches, phenomenological applications, and interdisciplinary connections. 2020, 2005.12299.

Bibliography II

[8] J. D. Bjorken.

Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region. *Phys. Rev. D*, 27:140–151, 1983.

- [9] Michael L. Miller, Klaus Reygers, Stephen J. Sanders, and Peter Steinberg. Glauber modeling in high energy nuclear collisions. *Ann. Rev. Nucl. Part. Sci.*, 57:205–243, 2007, nucl-ex/0701025.
- [10] CMS collaboration. Underlying event subtraction for particle flow. TWiki, 2013.
- [11] Serguei Chatrchyan et al.

Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. *Eur. Phys. J. C*, 72:2012, 2012, 1201.3158.

[12] Serguei Chatrchyan et al.

Studies of Azimuthal Dihadron Correlations in Ultra-Central PbPb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV. JHEP, 02:088, 2014, 1312.1845.

[13] Jaroslav Adam et al.

Anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. Phys. Rev. Lett., 116(13):132302, 2016, 1602.01119.

[14] S. Acharya et al.

Anisotropic flow of identified particles in Pb-Pb collisions at $\sqrt{s}_{\rm NN}=5.02$ TeV. JHEP, 09:006, 2018, 1805.04390.

Bibliography III

[15] Jonah E. Bernhard, J. Scott Moreland, Steffen A. Bass, Jia Liu, and Ulrich Heinz. Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium.

Phys. Rev., C94(2):024907, 2016, 1605.03954.

- [16] Jonah E. Bernhard, J. Scott Moreland, and Steffen A. Bass. Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma. *Nature Phys.*, 15(11):1113–1117, 2019.
- [17] John Novak, Kevin Novak, Scott Pratt, Joshua Vredevoogd, Chris Coleman-Smith, and Robert Wolpert. Determining Fundamental Properties of Matter Created in Ultrarelativistic Heavy-Ion Collisions. *Phys. Rev.*, C89(3):034917, 2014, 1303.5769.
- [18] H. Niemi, K. J. Eskola, and R. Paatelainen.

Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions. *Phys. Rev. C*, 93(2):024907, 2016, 1505.02677.

- [19] D. Devetak, A. Dubla, S. Floerchinger, E. Grossi, S. Masciocchi, A. Mazeliauskas, and I. Selyuzhenkov. Global fluid fits to identified particle transverse momentum spectra from heavy-ion collisions at the Large Hadron Collider. *IHEP* 06:044, 2020, 1909 10485.
- [20] Govert Nijs, Wilke van der Schee, Umut Gürsoy, and Raimond Snellings. Bayesian analysis of heavy ion collisions with the heavy ion computational framework Trajectum. *Phys. Rev. C*, 103(5):054909, 2021, 2010.15134.

Bibliography IV

- [21] Edmond lancu and Raju Venugopalan. The Color glass condensate and high-energy scattering in QCD, pages 249–3363. 3 2003, hep-ph/0303204.
- [22] Peter Brockway Arnold, Guy D. Moore, and Laurence G. Yaffe. Effective kinetic theory for high temperature gauge theories. *JHEP*, 01:030, 2003, hep-ph/0209353.
- [23] Aleksi Kurkela and Yan Zhu. Isotropization and hydrodynamization in weakly coupled heavy-ion collisions. *Phys. Rev. Lett.*, 115(18):182301, 2015, 1506.06647.
- [24] Liam Keegan, Aleksi Kurkela, Aleksas Mazeliauskas, and Derek Teaney. Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution. JHEP, 08:171, 2016, 1605.04287.
- [25] Aleksi Kurkela, Aleksas Mazeliauskas, Jean-François Paquet, Sören Schlichting, and Derek Teaney. Matching the Nonequilibrium Initial Stage of Heavy Ion Collisions to Hydrodynamics with QCD Kinetic Theory. *Phys. Rev. Lett.*, 122(12):122302, 2019, 1805.01604.
- [26] Aleksi Kurkela, Aleksas Mazeliauskas, Jean-François Paquet, Sören Schlichting, and Derek Teaney. Effective kinetic description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions. *Phys. Rev.*, C99(3):034910, 2019, 1805.00961.
- [27] R. Baier, Alfred H. Mueller, D. Schiff, and D. T. Son. 'Bottom up' thermalization in heavy ion collisions. *Phys. Lett.*, B502:51–58, 2001, hep-ph/0009237.

Bibliography V

- [28] Jorge Casalderrey-Solana, Hong Liu, David Mateos, Krishna Rajagopal, and Urs Achim Wiedemann. Gauge/String Duality, Hot QCD and Heavy Ion Collisions. Cambridge University Press, 2014, 1101.0618.
- [29] Jorge Casalderrey-Solana, Michal P. Heller, David Mateos, and Wilke van der Schee. From full stopping to transparency in a holographic model of heavy ion collisions. *Phys. Rev. Lett.*, 111:181601, 2013, 1305.4919.
- [30] Peter Brockway Arnold, Guy D Moore, and Laurence G. Yaffe. Transport coefficients in high temperature gauge theories. 2. Beyond leading log. *JHEP*, 05:051, 2003, hep-ph/0302165.
- [31] G. Policastro, Dan T. Son, and Andrei O. Starinets. The Shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma. *Phys. Rev. Lett.*, 87:081601, 2001, hep-th/0104066.
- [32] Aleksi Kurkela and Aleksas Mazeliauskas. Chemical equilibration in hadronic collisions. *Phys. Rev. Lett.*, 122:142301, 2019, 1811.03040.
- [33] Aleksi Kurkela and Aleksas Mazeliauskas. Chemical equilibration in weakly coupled QCD. Phys. Rev., D99(5):054018, 2019, 1811.03068.

Bibliography VI

[34] Morad Aaboud et al.

Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at $\sqrt{s_{\rm NN}}=5.02~{\rm TeV}$ with the ATLAS detector.

Phys. Lett. B, 790:108-128, 2019, 1805.05635.

- [35] R. Baier, Yuri L. Dokshitzer, Alfred H. Mueller, S. Peigne, and D. Schiff. Radiative energy loss of high-energy quarks and gluons in a finite volume quark - gluon plasma. *Nucl. Phys. B*, 483:291–320, 1997, hep-ph/9607355.
- [36] B. G. Zakharov.

Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD. *JETP Lett.*, 63:952–957, 1996, hep-ph/9607440.

- [37] Peter Arnold, Tyler Gorda, and Shahin Iqbal. The LPM effect in sequential bremsstrahlung: nearly complete results for QCD. JHEP, 11:053, 2020, 2007.15018.
- [38] João Barata and Yacine Mehtar-Tani. Improved opacity expansion at NNLO for medium induced gluon radiation. JHEP, 10:176, 2020, 2004.02323.
- [39] Carlota Andres, Liliana Apolinário, and Fabio Dominguez.

Medium-induced gluon radiation with full resummation of multiple scatterings for realistic parton-medium interactions.

JHEP, 07:114, 2020, 2002.01517.

Bibliography VII

- [40] Guy D. Moore, Soeren Schlichting, Niels Schlusser, and Ismail Soudi. Non-perturbative determination of collisional broadening and medium induced radiation in QCD plasmas. 5 2021, 2105.01679.
- [41] P. Caucal, E. Iancu, and G. Soyez. Jet radiation in a longitudinally expanding medium. *JHEP*, 04:209, 2021, 2012.01457.
- [42] Korinna C. Zapp.
 Jet energy loss and equilibration.
 Nucl. Phys. A, 967:81–88, 2017.
- [43] J. Casalderrey-Solana, Z. Hulcher, G. Milhano, D. Pablos, and K. Rajagopal. Simultaneous description of hadron and jet suppression in heavy-ion collisions. *Phys. Rev. C*, 99(5):051901, 2019, 1808.07386.
- [44] Carlota Andres, Néstor Armesto, Harri Niemi, Risto Paatelainen, and Carlos A. Salgado. Jet quenching as a probe of the initial stages in heavy-ion collisions. *Phys. Lett. B*, 803:135318, 2020, 1902.03231.
- [45] Dusan Zigic, Bojana Ilic, Marko Djordjevic, and Magdalena Djordjevic. Exploring the initial stages in heavy-ion collisions with high- p_{\perp} R_{AA} and v_2 theory and data. *Phys. Rev. C*, 101(6):064909, 2020, 1908.11866.

[46] Alexander Huss, Aleksi Kurkela, Aleksas Mazeliauskas, Risto Paatelainen, Wilke van der Schee, and Urs Achim Wiedemann.
 Predicting parton energy loss in small collision systems.
 Phys. Rev., C103(5):054903, 2021, 2007.13758.

Bibliography VIII

- [47] Nora Brambilla, Miguel Ángel Escobedo, Michael Strickland, Antonio Vairo, Peter Vander Griend, and Johannes Heinrich Weber.
 Bottomonium production in heavy-ion collisions using quantum trajectories: Differential observables and momentum anisotropy.
 7 2021, 2107.06222.
- [48] Xiaojun Yao, Weiyao Ke, Yingru Xu, Steffen A. Bass, and Berndt Müller. Coupled Boltzmann Transport Equations of Heavy Quarks and Quarkonia in Quark-Gluon Plasma. JHEP, 01:046, 2021, 2004.06746.
- [49] Shreyasi Acharya et al. Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

Phys. Lett. B, 813:136054, 2021, 2005.11131.

[50] Anton Andronic, Peter Braun-Munzinger, Krzysztof Redlich, and Johanna Stachel. Decoding the phase structure of QCD via particle production at high energy. *Nature*, 561(7723):321–330, 2018, 1710.09425.

[51] Vardan Khachatryan et al.

Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. *JHEP*, 09:091, 2010, 1009.4122.

Backup

Sources of transverse energy density fluctuations

Initial geometry is characterized by eccentricities $\varepsilon_n \Longrightarrow$ strong correlation with $v_n \approx k_n \varepsilon_n$

$$\varepsilon_n e^{in\Phi} = -\frac{\int d^2 \mathbf{x} \, r^n e^{in\phi} e(\mathbf{x}_{\perp})}{\int d^2 \mathbf{x}_{\perp} \, r^n e(\mathbf{x}_{\perp})}$$

from Giacalone, SEWM 2021 [indico]

The goal of hydrodynamic models is to predict v_n response to initial geometry fluctuations.

Multi-stage hydrodynamic models of nuclear collisions

initial conditions

viscous hydrodynamics

hadron cascade

- Initial transverse geometry: collisions of Monte-Carlo sampled nucleons
- Energy deposition: saturation-based (IP-Glasma, EKRT) or parametrized (Trento)
- With/without pre-equilibrium evolution, hydro starting time au_0
- 2D/3D numerical viscous hydrodynamic evolution
 - Equation of state: input from lattice QCD
 - $\eta/s, \zeta/s$ model parameters, can be T dependent.
 - Higher order transport coefficients.
- Freeze-out temperature, hadron transport codes (URQMD or SMASH)

Compute and compare to a large set of observables

- Particle yields, mean p_T , spectra for pions, kaons, protons
- Flow harmonics v_2, v_3, v_4 : integrated and p_T differential

Many comprehensive analyses: Novak, Novak, Pratt, Vredevoogd, Coleman-Smith, Wolpert (2013) [17], Niemi, Eskola, Paatelainen (2015) [18] Bernhard, Moreland, Bass, Liu, Heinz (2016) [15], Devetak, Dubla, Floerchinger, Grossi, Massiocchi, AM, Selyuzhenkov (2019) [19], Nijs, van der Schee, Gürsoy, Snellings (2020) [20]...

Theoretical descriptions

High-occupancy initial state and gluon condensation

- Soft particle production at mid-rapidity is dominated by small Bjorken-*x* gluons.
- In high energy limit, the proliferation of gluons is capped by self-interactions

$$\frac{1}{\alpha_S(Q_S)} = \frac{xG_A(x, Q_s^2)}{2(N_c^2 - 1)\pi R_A^2 Q_S^2} \sim f_g(p \sim Q_S).$$

• Q_S – saturation scale. Dense gluon packing (Colour Glass Condensate (CGC)).

At later times fields dilute and decohere \Longrightarrow switch to partonic description.

Aleksas Mazeliauskas

Different stages of heavy-ion collisions (high-energy/weak-coupling picture)

High temperature QCD kinetic theory

Weakly coupled $g \ll 1$ gas of quark and gluon quasi-particles $f(p_x, p_y, p_z)$

Aleksas Mazeliauskas

- Start with over-occupied and anisotropic hard gluons $p \sim Q_s$ from CGC.
- Do numerical simulations of QCD kinetic theory at different couplings.

Kurkela and Zhu (2015), Keegan, Kurkela, AM and Teaney (2016), Kurkela, AM, Paquet, Schlichting and Teaney (2018) [23, 24, 25, 26]

Extrapolated to "realistic" couplings leads to short equilibration time $\tau_{eq} \approx 1 \text{ fm}$ At realistic energy scales QCD is not that weakly coupled $g \sim 1 \dots$

- Start with over-occupied and anisotropic hard gluons $p \sim Q_s$ from CGC.
- Do numerical simulations of QCD kinetic theory at different couplings.

Kurkela and Zhu (2015), Keegan, Kurkela, AM and Teaney (2016), Kurkela, AM, Paquet, Schlichting and Teaney (2018) [23, 24, 25, 26]

Extrapolated to "realistic" couplings leads to short equilibration time $\tau_{eq} \approx 1 \,\text{fm}$ At realistic energy scales QCD is not that weakly coupled $g \sim 1 \dots$

- Start with over-occupied and anisotropic hard gluons $p \sim Q_s$ from CGC.
- Do numerical simulations of QCD kinetic theory at different couplings.

Kurkela and Zhu (2015), Keegan, Kurkela, AM and Teaney (2016), Kurkela, AM, Paquet, Schlichting and Teaney (2018) [23, 24, 25, 26]

Extrapolated to "realistic" couplings leads to short equilibration time $\tau_{eq} \approx 1 \,\text{fm}$ At realistic energy scales QCD is not that weakly coupled $g \sim 1 \dots$

- Start with over-occupied and anisotropic hard gluons $p \sim Q_s$ from CGC.
- Do numerical simulations of QCD kinetic theory at different couplings.

Kurkela and Zhu (2015), Keegan, Kurkela, AM and Teaney (2016), Kurkela, AM, Paquet, Schlichting and Teaney (2018) [23, 24, 25, 26]

Extrapolated to "realistic" couplings leads to short equilibration time $\tau_{eq} \approx 1 \,\text{fm}$ At realistic energy scales QCD is not that weakly coupled $g \sim 1 \dots$

Aleksas Mazeliauskas

Equilibration at strong couplings

see Casalderrey-Solana, Liu, Mateos, Rajagopal, Wiedemann (2014) [28]

- $\blacksquare \ N=4$ Super Yang-Mills theory (not QCD)
 - Different particle content
 - Conformal theory: no confinement, no running coupling
- Can be solved in the strong coupling limit using holography (AdS/CFT)

$$N_c \to \infty \quad \lambda = 4\pi \alpha_s N_c \to \infty.$$

 \implies involves solving general relativity in 5D

Heavy-ion collisions: planar shock wave collisions of energy.

Different stages of heavy-ion collisions (high-energy/weak-coupling picture)

Theoretical approaches of calculating η/s

Weakly coupled QCD kinetic theory with quark and gluon quasiparticles Armold, Moore, Yaffe (2003) [30]

$$\lambda \to 0$$
 $\frac{\eta}{s} = \frac{34.784}{\lambda^2 \ln\left(4.879/\sqrt{\lambda}\right)} \gg 1.$

Recent NLO computations (large NLO corrections).

Strongly interacting theories with gravity duals, e.g. N = 4 Super-Yang Mills Policastro, Son, Starinets (2001) [31]

$$\lambda = \infty \quad \frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08.$$

Corrections to infinity coupling limit.

• Lattice QCD: only discrete Euclidean time separations. No reliable extractions.

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} \mathrm{Im} G^R_{xy,xy}(\omega,0).$$

Phenomenological η/s extraction from data to model comparisons. One of HIP goals is to experimentally determine η/s and other transport properties of QGP. Different stages of heavy-ion collisions (high-energy/weak-coupling picture)

Hadronization and freeze-out

Eventually expanding system falls out of equilibrium \implies hydrodynamics not applicable.

- \blacksquare QGP hadronise at $T_c \sim 155\,{\rm MeV} \Longrightarrow$ change in microscopic degrees of freedom.
- Convert fluid-fields to hadrons while conserving momentum on freeze-out surface σ (Cooper-Frye)

$$\underbrace{E\frac{dN}{d^3p}}_{\text{itial hadrons}} = \frac{\nu}{(2\pi)^3} \int_{\sigma} f(p^{\mu}, T, u^{\mu}, \ldots) p^{\mu} d\sigma_{\mu}.$$

 Evolve resonance gas (Boltzmann equation + PDG hadron properties)

 Finally can construct soft/bulk experimental observables from long lived hadrons.

in

Fermion production in QCD kinetic theory

Fermions are produced through fusion $gg \rightarrow q\bar{q}$ and splitting $g \rightarrow q\bar{q}$.

We found the timescale of chemical equilibration in the Quark Gluon Plasma.