High-Density QCD with Proton and Ion Beams

Aleksas Mazeliauskas

Institute for Theoretical Physics, Heidelberg University

August 10, 2023

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Recap of the first lecture

Different stages of heavy-ion collisions (high-energy/weak-coupling picture)

• HI collisions create high-density deconfined state of matter \implies Quark-Gluon Plasma.

■ Rapid QCD thermalisation ⇒ applicability of fluid dynamic picture

Aleksas Mazeliauskas

Relativistic viscous hydrodynamics

We will discuss mid-rapidity region $\eta \approx 0$.

Ideal hydrodynamics

• Energy-momentum tensor for ideal fluid at rest:

$$T_{\mathsf{rest}}^{\mu\nu} = \begin{pmatrix} e & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \implies \Lambda_{\rho}^{\mu}(u)\Lambda_{\sigma}^{\nu}(u)T_{\mathsf{rest}}^{\rho\sigma} = eu^{\mu}u^{\nu} + p(g^{\mu\nu} + u^{\mu}u^{\nu})$$

• *e* is relativistic energy density, equation of state p(e), u^{μ} fluid 4-velocity, $u^{\mu}u_{\mu} = -1$.

The energy-momentum conservation is written

$$\partial_{\mu}T^{\mu\nu} = 0$$

Ideal equations of motion in a fluid rest-frame

$$\partial_t e = -(e+p)\vec{\nabla}i$$
$$\partial_t \vec{v} = -\frac{\vec{\nabla}p}{e+p}$$

• Change in energy is driven by expansion $\theta = \partial_{\mu} u^{\mu} = \vec{\nabla} \vec{v}!$

• Change in velocity driven by gradients in pressure $\vec{\nabla}p!$

Aleksas Mazeliauskas

Bjorken solution

- Let's find a hydro solution in Bjorken coordinates
- Fluid velocity $u^{\mu} = (1, 0, 0, 0)$, $\theta = \partial_{\mu} u^{\mu} = \frac{1}{\tau}$
- Energy density evolution

$$\frac{\partial e}{\partial \tau} = -\frac{e+p}{\tau}.$$

• For pressureless (free-streaming) expansion p = 0

$$e = e_0 \left(\frac{\tau_0}{\tau}\right).$$

• For ideal (conformal) QGP $p = \frac{1}{3}e$

$$e = e_0 \left(\frac{\tau_0}{\tau}\right)^{4/3}$$

Faster decrease due to longitudinal work

$$ds^{2} = -d\tau^{2} + dx^{2} + dy^{2} + \tau^{2} d\eta^{2}.$$

$$v^{z} = \frac{z}{t} = \tanh \eta.$$

$$\tau = t \quad \text{at} \quad \eta = 0.$$

$$r_{\text{region of ing parameter to organ number}}$$

$$r_{\text{region of ing parameter to organ number}}$$

$$r_{\text{region of ing parameter to organ number}}$$

FIG. 3. Space-time diagram of longitudinal evolution of the quark-gluon plasma.

Bjorken (1982) [1]

Relativistic viscous hydrodynamics

Gradient corrections to the energy momentum tensor

 $T^{\mu\nu}_{1st} = T^{\mu\nu}_{\rm ideal} + \Pi(g^{\mu\nu} + u^{\mu}u^{\nu}) + \pi^{\mu\nu}$

Viscous corrections: allowed gradients in fluid field

 $\begin{array}{ll} {\rm shear \ tensor} & \pi^{\mu\nu} = -\eta \partial^{(\mu} u^{\nu)} \\ {\rm bulk \ pressure} & \Pi = -\zeta \partial_{\mu} u^{\mu} \end{array}$

- η shear viscosity, ζ bulk viscosity, positive quantities, properties of the medium.
- Effect of viscous corrections for 1D boost-invariant expansion (e + p = sT)

$$\frac{\partial e}{\partial \tau} = -\frac{e+p-\frac{4}{3}\frac{\eta}{\tau}-\frac{\zeta}{\tau}}{\tau} = -\frac{e+p}{\tau}\left(1-\frac{4}{3}\frac{\eta/s}{T\tau}-\frac{\zeta/s}{T\tau}\right).$$

Energy drops slower in viscous fluid (entropy production).

• At high temperature QCD ($g \ll 1$): $\eta/s \approx 5.11/(g^4 \log \frac{2.4}{g})$

For infinitely strongly coupled supersymmetric theories: $\eta/s = \frac{1}{4\pi} \approx 0.08$ Viscosity per entropy $\eta/s, \zeta/s$ are key transport properties of QGP.

Beyond conventional gradient expansion: hydrodynamic attractors

Pressure anisotropy collapse to a *hydrodynamic attractor*

Heller, Janik, Witaszczyk (2011)

7 / 26

Experimental signals of QGP formation: collective flow

Transverse geometry and centrality

see Miller, Reygers, Sanders and Steinberg (2007) [2]

Not all nucleons participate in a collision.

- Monte-Carlo Glauber model of nucleons inside nuclei
- More colliding nucleons N_{part} if b is small.
- Larger $N_{\text{part}} \Longrightarrow$ more produced particles.
- Order events in multiplicity (centrality) classes
- 0-5% centrality \implies most head on collisions.

Strong correlation between initial geometry and particle multiplicity \implies select events with different geometry/size.

Multiparticle collective flows

Produced particles show significant angular modulations v_n in the azimuthal angle ϕ

Collective particle flow is explained by pressure gradient driven transverse QGP expansion.

Two-particle correlations — near-side and away-side ridges

Practical way of quantifying collective flows - two-particle correlation function

$$\left\langle \frac{dN}{d\phi_1} \frac{dN}{d\phi_2} \right\rangle \propto 1 + 2\sum_n v_n^2 \cos(n\Delta\phi).$$

Also generalizes to multi-particle correlations (8-particle v_n 's measured).

Collective flow correlations are long-ranged $|\Delta \eta| > 1$ – must be sourced by initial state.

aleksas.eu

Centrality and momentum dependence of flow coefficients

- Strong elliptic flow in mid-central events \implies overlap geometry
- v_3, v_4 with weak centrality dependence \implies fluctuations in geometry
- Mass ordering of $v_n(p_T) \Longrightarrow$ radial flow velocity $p_T \sim mv_T$

Standard hydrodynamic model of little Big Bang

- Multi-stage 2D/3D viscous hydrodynamic codes are widely available.
- Initial conditions and transport properties have to be constrained by data.

QGP properties from Bayesian parameter estimation

- \blacksquare Thousands of sample points in parameter space \times thousands of events
- Construct the posterior distributions for model parameters

$$\underbrace{P(\mathsf{parm}_i|\mathsf{data})}_{\mathsf{posterior}} \sim \underbrace{P(\mathsf{data}|\mathsf{parm}_i)}_{\mathsf{likelihood}} \underbrace{P(\mathsf{parm}_i)}_{\mathsf{prior}}.$$

$$P(\mathsf{data}|\mathsf{parm}_i) \sim \exp\left[-\Delta_i(\Sigma^{-1})_{ii}\Delta_i\right] \quad \Delta = \mathsf{data} - \mathsf{model}$$

Extracted physical parameters of QGP, e.g. $\eta/s \sim 0.08 - 0.2$ – smallest of all fluids.

Aleksas Mazeliauskas

Experimental signals of QGP formation: modification of hard probes

Hard Standard Model processes embedded in nuclear environment

Self-generated probes of QGP

- Examples: high- p_T jets or hadrons, heavy quarks, W, Z, γ
- \blacksquare Characteristic timescale $\Delta t \sim 1/Q \ll 1 {\rm fm}$ for $Q \gg T \sim 1 \, {\rm GeV}$
- Hard probe are produced before the formation of the medium.

We use the modification of hard probes to understand high-density QCD.

QCD factorisation in nuclear collisions

In the absence of medium, hard cross-sections can be calculated order by order:

$$\sigma\left(P_1, P_2\right) = \sum_{i,j} \int_0^1 dx_1 dx_2 \underbrace{f_i(x_1, Q^2) f_j(x_2, Q^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij}\left(x_1 P_1, x_2 P_2, Q^2\right)}_{\text{short distance}}.$$

*∂*_{ij} − hard partonic cross-section, universal, systematically improvable
 *f*_i (*x*, *Q*²) − parton distribution functions (PDFs), process-independent, non-perturbative, extracted by global fits to various cross-sections.

• Nuclear PDFs are different from proton PDF — need separate extraction.

Nuclear modification factor $R_{\rm AA}$

 \blacksquare Quantify nuclear effects by normalizing hard spectra in heavy-ions (AA) to pp

$$R_{\rm AA} = \frac{dN_{AA}/dp_T}{\langle N_{\rm coll} \rangle \, dN_{pp}/dp_T}.$$

• $\langle N_{\rm coll} \rangle$ – number of binary nucleon-nucleon collisions. Hard partonic luminosity $\propto N_{\rm coll}$

In the absence of medium effects expect $R_{\rm AA} \approx 1$ (up to nPDF and isospin corrections).

High- p_T parton energy loss — jet quenching

Jet spectrum is suppressed in nuclear collisions compared to proton-proton collisions

Jet quenching is explained by energy loss in strongly interacting plasma.

Aleksas Mazeliauskas

ATLAS (2018) [12] **ATLAS** anti- $k_t R = 0.4$ jets, $\sqrt{s_{NN}} = 5.02$ TeV

چ م

Soft particle production around the jet cone

Compare soft ($p_T < 5 \,\mathrm{GeV}$) particles around $p_T > 120 \,\mathrm{GeV}$ jet

Energy loss \implies enhanced soft particle production at large angles from jet axis.

Aleksas Mazeliauskas

Medium induced gluon radiation (BDMPS-Z) Baier, Dokshitzer, Mueller, Peigne, Schiff (1996) [14], Zakharov (1996) [15] and others Energy loss at strong coupling: infall of a classical string in a black hole, see Casalderrey-Solana, Liu, Mateos, Rajagopal, Wiedemann (2014) [13] Multiple soft scatterings of a hard parton \implies transverse momentum diffusion

 $\begin{array}{c} & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & L \end{array} \end{array} \langle k_{\perp}^2 \rangle = \hat{q}L \quad \hat{q} \propto T^3 - quenching \ parameter \ (medium \ property). \end{array}$

Medium induced gluon radiation – interference of multiple scatterings (LPM suppression)

Gluon radiation causes the energy loss of parent parton.

Medium modified spectra for a single parton (a quark or a gluon)

Energy loss for a parton moving distance L in a medium

$$\epsilon = \int_0^L dz \int_0^{\omega_c} d\omega \omega \frac{dI}{d\omega dz} = \int_0^L dz \int_0^{\omega_c} d\omega \alpha_s \sqrt{\frac{\hat{q}}{\omega}} \propto \alpha_S \hat{q} L^2.$$

Sensitivity to the path-length L. Steeply falling vacuum spectra

$$\frac{d\sigma_{\rm vac}}{dp_T} = \sigma_0 \left(\frac{p_0}{p_T}\right)^n, \quad n\approx 5-7$$

For average $\langle\epsilon\rangle$ energy loss, the modification is

$$R_{\mathsf{AA}} \propto \exp\left(-rac{n\left\langle\epsilon\right\rangle}{p_T}
ight)$$

Relative suppression becomes less at larger momentum.

Energy loss model comparisons to data

- Broad agreement among different models for basic observables like RAA
- \blacksquare Use data-to-model comparisons to determined medium properties, e.g. $\hat{q}.$

Jet evolution in medium is an active field of theoretical development.

"Heavy-ion" phenomena in pp and $p\mbox{Pb}$ and other small systems

Surprising macroscopic physics in small collision systems

Arguably the first discovery at LHC: long-range 2-particle correlations in high-multiplicity pp collisions CMS (2010) [29]

 \blacksquare Collective flow signals in pp and $p{\sf Pb}$ collisions, where QGP was not expected.

 $L_p \sim 1 \, \mathrm{fm} \ll L_{\mathrm{Pb}} \sim 10 \, \mathrm{fm}.$

- Not a jet effect: persists for 4-, 6- particle correlations and with rapidity cuts.
- Not reproduced by standard pp event generators, e.g., PYTHIA.

Fluid expansion in a system with $N_{ch} < 100$? Is there QGP in pp, pPb?

Enhanced production of strange hadrons

- Thermal abundances of strange hadrons ⇒ sign of chemical equilibration.
- Continuous increase of strangeness with multiplicity *across all systems*.

- What drives strangeness enchancement? QGP thermalization?
- Will strangeness saturate in ultra high-multiplicity pp collisions?

Aleksas Mazeliauskas

Outstanding problem: origin of collective behaviour in small systems

Big question: Is Quark Gluon Plasma created in small systems?

New opportunities with light ions

 $\sqrt{s_{NN}} \sim 7$ TeV OO at LHC in 2024 STAR collected $\mathcal{L}_{OO} = 32 \text{ nb}^{-1}$

Brewer, AM, van der Schee (2021), 2103.01939

Huss, Kurkela, AM, Paatelainen, van der Schee, Wiedemann PRL, PRC (2020)

- \blacksquare No jet quenching signals in peripheral PbPb and $p{\sf Pb}$ collisions seen
- Minimum bias oxygen-oxygen collisions probe the relevant size regime!

Summary

High-density QCD physics with nucleus-nucleus collisions

- Large volumes of high-density deconfined nuclear matter QGP.
- Abundant medium signals: collective flows, jet quenching, EM radiation, etc.
- Rapid QCD thermalisation, QGP behaves like nearly perfect fluid.

"Heavy-ion"-like phenomena with proton-nucleus and proton-proton collisions

- Surprising signals of collective flows and strangeness enhancement.
- \blacksquare Missing suppression of high- p_T hadrons and jets
- Several competing interpretations \implies open space for new ideas. Outlook
 - Rich experimental program with heavy and light ions at LHC in Run 3 and 4
 - Complementary studies of baryon rich QCD matter at RHIC and other colliders.
- New generation heavy-ion detector ALICE 3 for low- p_T and heavy quark studies. Many-body QCD phenomena are universal and widespread in all hadronic collisions \implies increasing synergy of HEP and HIP fields.

Bibliography I

[1] J. D. Bjorken.

Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region. *Phys. Rev. D*, 27:140–151, 1983.

- [2] Michael L. Miller, Klaus Reygers, Stephen J. Sanders, and Peter Steinberg. Glauber modeling in high energy nuclear collisions. *Ann. Rev. Nucl. Part. Sci.*, 57:205–243, 2007, nucl-ex/0701025.
- [3] CMS collaboration. Underlying event subtraction for particle flow. TWiki, 2013.
- [4] Serguei Chatrchyan et al.

Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. *Eur. Phys. J. C*, 72:2012, 2012, 1201.3158.

[5] Serguei Chatrchyan et al.

Studies of Azimuthal Dihadron Correlations in Ultra-Central PbPb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV. *JHEP*, 02:088, 2014, 1312.1845.

[6] Jaroslav Adam et al.

Anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. Phys. Rev. Lett., 116(13):132302, 2016, 1602.01119.

[7] S. Acharya et al. Anisotropic flow of identified particles in Pb-Pb collisions at $\sqrt{s}_{\rm NN}=5.02$ TeV. JHEP, 09:006, 2018, 1805.04390.

Bibliography II

- [8] Jonah E. Bernhard, J. Scott Moreland, Steffen A. Bass, Jia Liu, and Ulrich Heinz. Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium. *Phys. Rev.*, 094(2):024907, 2016, 1605.03954.
- Jonah E. Bernhard, J. Scott Moreland, and Steffen A. Bass. Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma. *Nature Phys.*, 15(11):1113–1117, 2019.

[10] Georges Aad et al.

Measurement of W^{\pm} boson production in Pb+Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ATLAS detector. *Eur. Phys. J. C*, 79(11):935, 2019, 1907.10414.

[11] Albert M Sirunyan et al.

High precision measurements of Z boson production in PbPb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV. 3 2021, 2103.14089.

[12] Morad Aaboud et al.

Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV with the ATLAS detector. *Phys. Lett. B*, 790:108–128, 2019, 1805.05635.

[13] Jorge Casalderrey-Solana, Hong Liu, David Mateos, Krishna Rajagopal, and Urs Achim Wiedemann. Gauge/String Duality, Hot QCD and Heavy Ion Collisions. Cambridge University Press, 2014, 1101.0618.

Bibliography III

[14] R. Baier, Yuri L. Dokshitzer, Alfred H. Mueller, S. Peigne, and D. Schiff. Radiative energy loss of high-energy quarks and gluons in a finite volume quark - gluon plasma. *Nucl. Phys. B*, 483:291–320, 1997, hep-ph/9607355.

[15] B. G. Zakharov.

Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD. *JETP Lett.*, 63:952–957, 1996, hep-ph/9607440.

- [16] Korinna C. Zapp. Jet energy loss and equilibration. Nucl. Phys. A, 967:81–88, 2017.
- [17] Jaroslav Adam et al. Azimuthal anisotropy of charged jet production in $\sqrt{s_{\rm NN}} = 2.76$ TeV Pb-Pb collisions. *Phys. Lett. B*, 753:511–525, 2016, 1509.07334.
- [18] Jaroslav Adam et al.

Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV. Phys. Rev. C, 93(3):034913, 2016, 1506.07287.

[19] S. Acharya et al.

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC.

JHEP, 11:013, 2018, 1802.09145.

Bibliography IV

[20] S. Cao et al.

Determining the jet transport coefficient \hat{q} from inclusive hadron suppression measurements using Bayesian parameter estimation.

Phys. Rev. C, 104(2):024905, 2021, 2102.11337.

[21] Jean-François Paquet, Chun Shen, Gabriel S. Denicol, Matthew Luzum, Björn Schenke, Sangyong Jeon, and Charles Gale.

Production of photons in relativistic heavy-ion collisions. *Phys. Rev. C*, 93(4):044906, 2016, 1509.06738.

Peter Petreczky.
 Quarkonium in Hot Medium.
 J. Phys. G, 37:094009, 2010, 1001.5284.

- [23] Peter Braun-Munzinger and Johanna Stachel. The quest for the quark-gluon plasma. *Nature*, 448:302–309, 2007.
- [24] Betty Abelev et al. J/ψ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. *Phys. Rev. Lett.*, 109:072301, 2012, 1202.1383.

 [25] Nora Brambilla, Miguel Ángel Escobedo, Michael Strickland, Antonio Vairo, Peter Vander Griend, and Johannes Heinrich Weber.
 Bottomonium production in heavy-ion collisions using quantum trajectories: Differential observables and momentum anisotropy.
 7 2021, 2107.06222.

Bibliography V

[26] Xiaojun Yao, Weiyao Ke, Yingru Xu, Steffen A. Bass, and Berndt Müller. Coupled Boltzmann Transport Equations of Heavy Quarks and Quarkonia in Quark-Gluon Plasma. JHEP, 01:046, 2021, 2004.06746.

[27] Shreyasi Acharya et al.

Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

Phys. Lett. B, 813:136054, 2021, 2005.11131.

[28] Albert M Sirunyan et al.

Studies of Beauty Suppression via Nonprompt D^0 Mesons in Pb-Pb Collisions at $Q^2 = 4 \text{ GeV}^2$. Phys. Rev. Lett., 123(2):022001, 2019, 1810.11102.

[29] Vardan Khachatryan et al.

Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. *JHEP*, 09:091, 2010, 1009.4122.

[30] Shreyasi Acharya et al.

Investigations of Anisotropic Flow Using Multiparticle Azimuthal Correlations in pp, p-Pb, Xe-Xe, and Pb-Pb Collisions at the LHC. *Phys. Rev. Lett.*, 123(14):142301, 2019, 1903.01790.

[31] Z. Citron et al.

Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams.

CERN Yellow Rep. Monogr., 7:1159-1410, 2019, 1812.06772.

Bibliography VI

- [32] Kari J. Eskola, Petja Paakkinen, Hannu Paukkunen, and Carlos A. Salgado. EPPS16: Nuclear parton distributions with LHC data. *Eur. Phys. J. C*, 77(3):163, 2017, 1612.05741.
- [33] Bjoern Schenke, Chun Shen, and Prithwish Tribedy. Running the gamut of high energy nuclear collisions. *Phys. Rev.*, C102(4):044905, 2020, 2005.14682.
- [34] Heikki Mäntysaari and Björn Schenke. Evidence of strong proton shape fluctuations from incoherent diffraction. *Phys. Rev. Lett.*, 117(5):052301, 2016, 1603.04349.
- [35] Torbjörn Sjöstrand and Marius Utheim. A Framework for Hadronic Rescattering in pp Collisions. *Eur. Phys. J. C*, 80(10):907, 2020, 2005.05658.
- [36] Christian Bierlich, Smita Chakraborty, Gösta Gustafson, and Leif Lönnblad. Setting the string shoving picture in a new frame. JHEP, 03:270, 2021, 2010.07595.
- [37] Aleksi Kurkela, Urs Achim Wiedemann, and Bin Wu. Nearly isentropic flow at sizeable η/s. Phys. Lett. B, 783:274–279, 2018, 1803.02072.
- [38] T. Lappi, B. Schenke, S. Schlichting, and R. Venugopalan. Tracing the origin of azimuthal gluon correlations in the color glass condensate. *JHEP*, 01:061, 2016, 1509.03499.

Bibliography VII

[39] Georges Aad et al.

Transverse momentum and process dependent azimuthal anisotropies in $\sqrt{s_{\rm NN}} = 8.16$ TeV p+Pb collisions with the ATLAS detector. *Eur. Phys. J. C*, 80(1):73, 2020, 1910.13978.

- [40] ALICE physics projections for a short oxygen-beam run at the LHC. May 2021.
- [41] Alexander Huss, Aleksi Kurkela, Aleksas Mazeliauskas, Risto Paatelainen, Wilke van der Schee, and Urs Achim Wiedemann.
 Predicting parton energy loss in small collision systems.

Phys. Rev., C103(5):054903, 2021, 2007.13758.

[42] Georges Aad et al.

Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb^{-1} of Pb+Pb data with the ATLAS detector.

JHEP, 03:243, 2021, 2008.05355.

[43] Georges Aad et al.

Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS. *Phys. Rev. C*, 104(1):014903, 2021, 2101.10771.

Backup

Hard partonic luminosities in nuclear collisions (no medium)

Nuclear parton distribution functions

Bound proton PDF as modification of free proton

 $f_i^{p/A}(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2).$

at initial scale $Q \sim 1 \,\mathrm{GeV}$. Isospin symmetry \Longrightarrow neutrons.

- Modification depends on mass number A (parametrized)
- $\blacksquare \ Q^2$ evolution described by DGLAP
- Global fit to fixed target DIS, DY and selected collider data.

Fig. 1 Illustration of the EPPS16 fit function $R_i^A(x, Q_0^2)$.

Scenario I: hydrodynamic in small systems

Assume small droplets of QGP in pp and pPb collisions.

- v_n in $pp \Longrightarrow$ what is the shape of a proton?
- Qualitative description of data, but questions remain about model validity.
- Applicability of hydrodynamics even far-from-equilibrium?

W and Z in PbPb collisions

- No Z-boson elliptic flow \implies not interacting with medium.
- Flat R_{AA} in central collisions consistent with N_{coll} scaling.
- Deviation in peripheral events \implies potential selection bias.
- W and Z are important calibrating probes, e.g. initial momentum in Z+jet or Z+hadron events.

Scenario II: collectivity in HEP event generators

Hadron production from string breaking in PYTHIA: Lund string model.

- Color ropes increase in string tension \implies more strange hadrons
- String shoving repulsions of closely packed string \implies flow.
- Hadron rescattering after hadronization \implies more collective flow.

Sjöstrand, Utheim (2020) [35]

- Challenge to quantitatively describe multi-particle correlations.
- Gradient driven expansion in QGP and between strings \implies how to tell apart?

aleksas.eu

Other theory approaches

Kinetic theory in dilute systems:

- Interpolate from free-streaming to hydrodynamic limits.
- Can generate collective flow from just few scatterings.
- Elucidate the limits of hydrodynamics.
- Currently limited to simplified theories/scenarios.

Scattering of colour domains in CGC

- Anisotropic scatterings in momentum space
- Not related to system geometry
- Small signal, often washed out by final-state scatterings.
- Proposed signatures in small systems, e.g. v_2 and $\langle p_T \rangle$ correlations.

Many ideas about collectivity in small systems \implies opportunity/challenge to discover the right QCD degrees of freedom.

More particles moving in ±x-direction

Kurkela, Wiedemann, Wu (2018) [37]

Puzzle of missing high-momentum energy loss in small systems

- No evidence of hadron/jet suppression in p Pb, i.e. $R_{pA} \approx 1$
- Clear azimuthal modulations of high p_T hadrons.
- Contradicts the current paradigm: collective flow \iff suppression of high- p_T spectra.

Intensive searches for subtle energy loss signals (new observables, new systems).

Oxygen run at LHC in Run 3 (also at RHIC)

Many physics opportunities with OO and $p{\rm O}$ see Yellow report (2018) [31], OppOatLHC workshop [indico]

- *p*O: interest from cosmic ray physics.
- OO comparable size to *p*Pb, but better geometry control.
- Minimum-bias R_{AA} free of geometry uncertainties \implies precise energy loss measurement

Potential for discovering energy loss in $N_{\text{part}} \approx 10$ system

Aleksas Mazeliauskas

Smaller than \ensuremath{pp}

Ultra-peripheral collisions (= at least one nucleus intact)

- Ultrarelativistic ions \Longrightarrow large photon flux $\propto Z^2$
- Can study photon-nucleus and photon-photon collisions

- Anisotropic flow signal in γA (photon fluctuates into ρ, ω)
- Verification of QED prediction, constraints on axion like particle production.

Photon and di-leptons — penetrating probes of QGP

- Produced perturbatively at initial stages (prompt)
- Radiated thermally by QGP (rate depends on temperature, quark content).
- Do not reinteract with the medium once produced (but can be boosted at emission point)

Excess of thermal photon production and collective flow \implies signature of hot flowing QGP. Can use EM radiation to study the early time guark production in QGP. Aleksas Mazeliauskas

2 25 3

Jets in high-energy QCD matter

In-medium Monte-Carlo jet implementations (Jewel, Martini, LBT, Hybrid, Jetscape...)

- Space-time structure of vacuum parton shower via formation time $\Delta t \sim E/Q^2$.
- **Quenching parameter** $\hat{q}(t, \vec{x}(t))$ from hydrodynamic background.
- $L_{\text{long}} > L_{\text{short}} \Longrightarrow$ anisotropic energy loss.

Heavy quarks in QCD matter

Heavy quarks evolution in QGP

Charm and beauty quarks make excellent probes of QGP evolution

- Produced perturbatively $(m_Q \gg T)$ and at early times $t_f \sim (2m_Q)^{-1}$
- Interacts strongly with QGP during evolution: D_s diffusion coefficient.
- Quark flavour preserved can be tagged in final state.

Focus on understanding heavy quark co-flow with the medium.

Aleksas Mazeliauskas

Quarkonium $Q\bar{Q}$ states in heavy-ion collision

In vacuum: confining potential between Q and $ar{Q}$

$$F_{Q\bar{Q}}(r) = -\frac{\alpha}{r} + \underbrace{\sigma}_{\text{string tension}} r.$$

■ Colour screening in QGP ⇒ dissociation of quarkonium, sensitive to QGP temperature.

• Observed significant suppression of J/ψ , but less at higher collision energies.

• Dissociated charm quarks in QGP recombine at phase transition $\implies J/\psi$ regeneration.

Full story more complicated: Lindblad equation for density matrix ρ Brambilla, Escobedo, Strickland, Vairo, Griend, Weber (2021) [25] Coupled Boltzmann Transport Equations, Yao, Ke, Xu, Bass, Müller (2020) [26]

Aleksas Mazeliauskas

aleksas.eu

static quark free energy

F₄(r,T) [GeV]

0.8 0.6 0.4 0.2

-0.2 -0.4

-0.6 -0.8

Suppression and flow of heavy quarks in medium

for different theoretical approaches see Heavy-Flavor Transport in QCD Matter [indico]

- At high p_T : partonic energy loss \implies same suppression as light hadrons.
- At low p_T : Brownian motion of massive quarks in flowing background
 - \implies heavy quarks are boosted by the medium generating momentum anisotropy.

■ Significant collective flow of heavy-flavour ⇒ determine diffusion coefficient.

• Strong indication of kinetic charm equilibration \implies studies of beauty thermalisation.

Hadron and jet R_{AA} and azimuthal harmonics

Flavour independent suppression of hardons $p_T > 10 \text{ GeV}$ \implies support for partonic energy loss picture

■ Significant jet suppression (centrality dependent) and azimuthal modulation ⇒ support for path-length dependent energy loss.

Aleksas Mazeliauskas

aleksas.eu

Oxygen-oxygen collisions - unique opportunity to discover energy loss

- Discovery of small energy loss ⇒ *important to quantify uncertainties in the baseline*
- We performed next-to-leading order computations of perturbative baseline.
- Extrapolated energy loss models down to oxygen-oxygen collisions.

Measurable difference between the baseline and modelled medium effect!

Huss, Kurkela, AM, Paatelainen, van der Schee, Wiedemann, PRC, PRL (2021)