

Experimental physics at the LHC: *from collisions to results*

Supported by, Latvian Council of Science, State Research Programme project: VPP-IZM-CERN-2022/1-0001

RIGA TECHNICAL UNIVERSITY Institute of Particle Physics and Accelerator Technologies

Kārlis Dreimanis Baltic School of High-Energy Physics and Accelerator Technologies

> Palanga, Lithuania August 10th, 2023

What is experimental HEP?

- Broadly speaking, experimental HEP has two tasks:
 - 1) To measure precisely the various parameters and predictions of the Standard Model (SM);
 - 2) To search for signals of yet-undiscovered *New Physics*, *lurking* Beyond the SM.
- But why?
 - Particle physics seeks to answer the most fundamental questions about the Nature of our Universe, by studying its elementary building blocks - particles (and their fields).

What is experimental HEP?

- Broadly speaking, experimental HEP has two tasks:
 - 1) To measure precisely the various parameters and predictions of the Standard Model (SM);
 - 2) To search for signals of yet-undiscovered *New Physics*, *lurking* Beyond the SM.
- But why?
 - Particle physics seeks to answer the most fundamental questions about the Nature of our Universe, by studying its elementary building blocks - particles (and their fields).

"Why climb Mount Everest?" "Because it's there!" (George Mallory)

What is experimental HEP?

- Broadly speaking, experimental HEP has two tasks:
 - 1) To measure precisely the various parameters and predictions of the Standard Model (SM);
 - 2) To search for signals of yet-undiscovered *New Physics*, *lurking* Beyond the SM.
- But why?
 - Particle physics seeks to answer the most fundamental questions about the Nature of our Universe, by studying its elementary building blocks - particles (and their fields).

"Experiment without theory is blind, but theory without experiment is a mere intellectual play" (Immanuel Kant)

The Standard Model

- The Standard Model consists of 27 unique elementary particles [experimentally speaking...]:
 - 6(+6) (anti-)quarks;
 - 3(+3) charged (anti-)leptons;
 - 3 neutral leptons;
 - 6 force carriers;
- Since the discovery of the Higgs, its proposed particle content is complete!
- However, as a most fundamental theory of Nature, the SM is still lacking!

• To study the SM experimentally, we need to study all of its constituent particles! To do that we must first create them in particle colliders!

- In an e+e- collider (such as LEP) life is "simple":
 - The *entire particle* participates in the collision;
 - The full energy is converted into *pure energy*;
 - Collisions can be tuned for a specific resonances:
 - bb{bar} (SuperKEKB*);
 - Z, WW, ZZ (LEP);
 - ZH, tt{bar} (FCC-ee**);
 - Clean signatures!

* using asymmetric {energy} beams.

** hopefully, all of you will contribute to the creation of this!

Image source

- In an e+e- collider (such as LEP) *life is "simple"*:
 - The *entire particle* participates in the collision;
 - The full energy is converted into *pure energy*;
 - Collisions can be tuned for a specific resonances:
 - bb{bar} (SuperKEKB*);
 - Z, WW, ZZ (LEP);
 - ZH, tt{bar} (FCC-ee**);
 - Clean signatures!
- But e+e- colliders have a drawbacks:

 - Cannot be solved *simply* by stronger bending magnets \rightarrow need larger radii!

(but even then, P goes as 1/r² and still as $\gamma^4)$

* using asymmetric {energy} beams.

all of you will contribute to the	e creation of this!
-----------------------------------	---------------------

- In an e+e- collider (such as LEP) life is "simple":
 - The *entire particle* participates in the collision; 0
 - The full energy is converted into *pure energy*; Ο
 - Collisions can be tuned for a specific resonances: Ο
 - bb{bar} (SuperKEKB*);
 - Z, WW, ZZ (LEP);
 - ZH, tt{bar} (FCC-ee**);
 - Clean signatures! 0
- But e+e- colliders have a drawbacks:
 - Greater synchrotron radiation losses \rightarrow energy limit! Ο
 - Cannot be solved *simply* by stronger bending magnets \rightarrow need larger radii! Ο

(but even then, P goes as $1/r^2$ and still as V^4)

* using asymmetric {energy} beams.

Energy loss per $P\propto\gamma^{\rm \tiny t}$

$$\gamma = E/mc^2$$

$$m_e = 511 keV, \quad m_p = 938 MeV$$

revolution:

- Collisions in a hadron collider are much more complicated:
 - Only a fraction of the particle participates in the collision;
 - Extremely *messy* environment;
 - *Impossible* to tune the collision energy for certain resonances.
- But hadron colliders have their up-sides:
 - Low synchrotron radiation losses:
 - Higher achievable centre-of-mass energies;
 - $\blacksquare \quad Increased \ Iuminosity \rightarrow higher \ statistics;$
 - Further energy gains available with further magnet development!
- Hadron collision process can be broken down to its main parts:
 - Main hard scattering
 - Underlying event
 - Collision product decay
 - Hadronization and hadron decays

made sou

- Protons are constituent particles;
- We tend to think them as consisting of 3 quarks (uud), but in truth these 3 quarks are just the *valence* quarks, held together by gluons, whilst swimming in a quark-gluon sea!
- The greater the energy with which one probes the proton (ie. the greater the Q²), the greater the chance of *encountering* a non-valence constituent of the proton!
- These constituents are called partons and their distributions

 (likelihood of being encountered with a given Bjorken-x at a given Q²)
 are governed by the parton distribution functions (PDFs).

- PDFs can be measured best at ep experiments, where e deeply probes the proton;
- PDFs measured at given Q² can then be evolved to other
 Q² values using the DGLAP equations;

(and I'll leave it at that here!)

 But, importantly, this leads to LHC being, essentially, a gluon-gluon collider!

- Main (hard) scattering event:
 - Large momentum transfer (Q^2);
 - Perturbatively calculable!
- Secondary (underlying) event/-s:
 - Small Q²;
 - *Impossible* to calculate using perturbative methods!
 - Must be *provided* by the experiment!
- Our detectors can see only the green and yellow!
 - Hadron decays;
 - Photon emission;

[and prompt and non-prompt leptons (not shown)].

- The aim of the LHC experiments is to study *exotic* particles.
- In HEP, *exotic* often means more massive.
- Such particles are extremely *fickle* they decay into more *mundane* particles very quickly:
- These particles *travel* infinitesimally small distances from the primary vertex (PV) before decaying.
- Example: the LHC beam-spot at ATLAS

Image source: ATLAS collaboration

- The aim of the LHC experiments is to study *exotic* particles.
- In HEP, *exotic* often means more massive.
- Such particles are extremely *fickle* they decay into more *mundane* particles very quickly:

0	Z,W±:	t∼10 ⁻²⁵ s;
0	t:	t∼10 ⁻²⁵ s;
0	H:	t∼10 ⁻²² s.

- These particles *travel* infinitesimally small distances from the primary vertex (PV) before decaying.
- The beam-spot contains all the pp interactions within it (both transversely & longitudinally);

- The aim of the LHC experiments is to study *exotic* particles.
- In HEP, *exotic* often means more massive.
- Such particles are extremely *fickle* they decay into more *mundane* particles very quickly:

0	Z,W±:	τ~10 ⁻²⁵ s;
0	t:	τ~10 ⁻²⁵ s;
0	H:	t∼10 ⁻²² s.

- These particles *travel* infinitesimally small distances from the primary vertex (PV) before decaying.

- In fact, it is even worse that!
- LHC beams are not perfectly uniform nor is the beam position always the same;
- The detectors must be placed a safe distance from the beam to avoid costly damage;
- At the LHC, this safe distance is ~3 cm;

- In fact, it is even worse that!
- LHC beams are not perfectly uniform nor is the beam position always the same;
- The detectors must be placed a safe distance from the beam to avoid costly damage;
- At the LHC, this safe distance is ~3 cm;
- Thus, the average distance a particle must travel to be directly detected is not this ...

- In fact, it is even worse that!
- LHC beams are not perfectly uniform nor is the beam position always the same;
- The detectors must be placed a safe distance from the beam to avoid costly damage;
- At the LHC, this safe distance is ~3 cm;
- Thus, the average distance a particle must travel to be directly detected is not this ...

... but rather something like THIS!

Which is not really viable!

- We never actually detect these heavy particles!
- We only detect their decay products! (and decay products of decay products of ...)
- Here, ttH production via a **gluon-gluon** collision process at a hadron collider (like LHC) is shown;
- t quarks and H boson are produced;
- These decay in W bosons, **7** leptons and **b** quarks; **P** :
- These then further decay into various **leptons** and **hadrons**.

- Thankfully, some *exotic* particles are more *compliant*:
 - τ leptons: $T \sim 10^{-13}$ s;
 - D mesons: $T \sim 10^{-13}$ s;
 - B mesons: $T \sim 10^{-12}$ s.
- At the LHC, B mesons can travel as far as ~1 cm!
- One detector at the LHC can, in theory, "see" these particles *directly*;
- LHCb's VELO detector can be moved-in towards the collision point to a distance of 5 mm;
- VELO stands for VErtex LOcator, as the detector specialises in precise reconstruction of secondary vertices.

• In truth, the tracks are still reconstructed from the decay product interaction with the detector;

• But the closer to can start the decay product detection, the better your vertex resolution!

Vertexing at the GPDs

- For ATLAS and CMS, the first detecting layer is 3.3 and 2.9 cm from the beam-spot, respectively.
- The challenge of precise secondary vertex reconstruction is even higher!

Vertexing at the GPDs

- For ATLAS and CMS, the first detecting layer is 3.3 and 2.9 cm from the beam-spot, respectively.
- The challenge of precise secondary vertex reconstruction is even higher!
- Especially, given the pile-up at these detectors!

Image source: CMS collaboration

Vertexing at the GPDs

- For ATLAS and CMS, the first detecting layer is 3.3 and 2.9 cm from the beam-spot, respectively.
- The challenge of precise secondary vertex reconstruction is even higher!
- Especially, given the pile-up at these detectors!
- Here, the n_{PV} is *only* ~100;
- At **HL-LHC** it will be up to **200**!

Image source: CMS collaboration

Track reconstruction

- Precise track reconstruction is vital for good quality physics results.
- Trackers are usually* the nearest-to-beam instrumentation at the LHC;
- Trackers are immersed in a B-field, which bends the particle paths:

• The bending radius is used to measure charged particle momentum.

- An ideal tracker is infinitesimally thin to avoid `corrupting' the measured particle path through material interactions;
- Ideally, the tracker would also be infinitely granular, but in reality, understanding of your the B-field can be the driver of the momentum uncertainty with a modern pixel tracker.

^{*} muon stations are, essentially, also trackers, but are the farthest.

 As the name suggests, calorimeters aim to measure the *total calories* (the total energy) of the incident particles;

 Thus, completely opposite to trackers, calorimeters.
 want to maximally 'corrupt', or stop, the detected particles;

• Usually split into ECAL and HCAL to allow for a separation between e/γ and the hadronic particles.

Image source: ATLAS collaboration

Particle Identification

- Particle Identification (PID) is usually a combined effort of multiple detector layers and technologies.
- As before, ECAL/HCAL split allows to separate e/γ from the hadrons.
- Adding the tracking information allow to split electrons from γ and charged hadrons from neutral hadrons.
- Finally, placing muon stations as the outermost layer, allows to identify muons (and their tracks in the tracker).
- But this approach struggles to separate, various hadronic particles from each other \rightarrow particularly relevant for flavour physics at LHCb!

Image source: https://doi.org/10.1016/j.nima.2011.03.009

Particle Identification

- Use ingenuity Cherenkov light!
- Cherenkov light is produced when a charged particle moves in a medium faster than the speed of light in that medium;
- It creates a light-cone with an angle related to the particle's velocity:

 $cos\theta_C = \frac{1}{\beta n}$

Baltic School of High-Energy Physics and Accelerator Technologies, Palanga, Lithuania, August 10th, 2023

Image source: LHCb collaboration

Correcting the measurements

- All particles are *detected* with a given efficiency, ε_{det} ;
- Various parameters need to be corrected for, like reconstruction efficiency, ID efficiency, etc. ...
- This is usually done by binning your distributions against some relevant variable:
 - Total momentum, p;
 - Transverse momentum, pT;
 - Pseudorapidity, η;
 ... etc.
 - ... and finding the $\varepsilon_{\rm det}$ in each bin.
- Another tricky correction is accounting for bin migrations.

Image source: CMS collaboration

Monte-Carlo simulations

Monte-Carlo simulations

Detecting == interfering!

• We must have a complete (!) understanding of what the generated particles encounter;

Image source: ATLAS collaboration

Detecting == interfering!

• We must have a complete (!) understanding of what the generated particles encounter;

 We use a tool* called <u>Geant4</u>, to fully simulate our detectors, including both active and passive materials within them.

* other tools, such as FLUKA are also used for more specialised needs.

Image source: Geant4 collaboration

Ē

Combination: full simulation!

- To get to how *nature* shows-up in our detector, one must combine the physics generator
 with the detector simulation ...
 ... and add digitisation and other steps ...
- All HEP experiments have their own huge software packages, painstakingly built, continuously updates and improved:

• Finally, at the end of all this, we arrive at our *reconstruction* or *detector* level MC simulation.

CMS Monte Carlo Simulation approach

Image source: CMS collaboration

What information is readily accessible?

Monte-Carlo simulation

Detector / reconstruction level information

Generator / truth level information

Collision data

Detector / reconstruction level information

Generator / truth level information

 What information is readily accessible?

 Monte-Carlo simulation
 Collision data

Detector / reconstruction level information

Generator / truth level information

Detector / reconstruction level information

Generator / truth level information

But the truth level information in real collision data is exactly what we seek!

Catastrophe!!!

- To avoid the catastrophe, we must correct the measured distributions for detector effects;
- We must also understand our backgrounds very well;
- In fact, the vast majority of time it takes to complete a physics analysis at LHC goes to understanding backgrounds, correcting your distributions, etc. ...

- To avoid the catastrophe, we must correct the measured distributions for detector effects;
- We must also understand our backgrounds very well;
- In fact, the vast majority of time it takes to complete a physics analysis at LHC goes to understanding backgrounds, correcting your distributions, etc. ...

... and convincing your collaborators that you have done everything correctly!

- The knowledge of MC reco, MC truth and data reco distributions can be used to *recover* data truth, via a process called detector unfolding.
- Consider a reconstructed distribution, $\mathbf{M}_{r(MC)}$, and a true distribution, $\mathbf{M}_{t(MC)}$; these can be related to each other through *some* response matrix **R** via $\mathbf{M}_{r(MC)} = \mathbf{R}\mathbf{M}_{t(MC)}$.

- Hence, by definition, the relation $\mathbf{M}_{t(MC)} = \mathbf{R}^{-1}\mathbf{M}_{r(MC)}$ also holds true; \mathbf{R}^{-1} is what one calls the unfolding matrix \mathbf{U} , which can be obtained directly from MC and applied to $\mathbf{M}_{r(data)}$ to get find $\mathbf{M}_{t(data)} = \mathbf{U}\mathbf{M}_{r(data)}$
- For MC, the link between truth and reco particles can be retained, ie. one can identify:
 - Correctly reconstructed particles (exist at both the truth and reco levels);
 - Missed particles (exist only at the truth level);
 - Ghost particles (exist only at the reco level).
- Using this information one can easily construct both **R** and **U**.

🚑 Unfolding example

• Multiplicity distributions in (e×η) **[LHCb unpublished]**:

Image source: https://cds.cern.ch/record/2304736/

Unfolding example

• Multiplicity distributions in (e×η) [LHCb unpublished]:

Image source: https://cds.cern.ch/record/2304736/

The goal - physics

Image source: ATLAS collaboration

Image source: CMS collaboration

暮 The goal - physics

Image source: ATLAS collaboration

The goal - physics

- There are a vast array of various physics measurements to be done to further validate (or finally discredit!)
 the SM!
 - Particle production cross-sections;
 - Particle decay channels and widths;
 - Particle masses;
 - Coupling constants;
 - Angular distributions; ... etc. ...
- But we also perform spectroscopy (bump-hunting) and many (many!)
 NP searches !

Image source: CMS collaboration

- Spectroscopy can be exciting, but has very little discovery potential without a considerable jump in collision energies (or theory suggestion/model for some odd particle-combinations!).
- Alternatively, we need MUCH MORE data!

- Two reconstructed high-p_T **photons**:
 - Pointing towards a **single vertex**;
 - Combined mass ~124.7 GeV/c².
- What was, **more likely than not**, produced in **this** collision event?

- Two reconstructed high-p_T **photons**:
 - Pointing towards a **single vertex**;
 - Combined mass ~**124.7 GeV/c²**.
- What was, **more likely than not**, produced in **this** collision event?

Let's see!

- Two reconstructed high-p_T **photons**:
 - Pointing towards a **single vertex**;
 - Combined mass ~**124.7 GeV/c²**.
- What was, **more likely than not**, produced in **this** collision event?

Let's see!: at 124.7 GeV/c² ...

... the # of SM background events ~1.75x10³;

- Two reconstructed high-p_T **photons**:
 - Pointing towards a **single vertex**;
 - Combined mass ~**124.7 GeV/c²**.
- What was, **more likely than not**, produced in **this** collision event?

Let's see!: at 124.7 GeV/c² ...

... the # of SM background events $\sim 1.75 \times 10^3$; ... the # of Higgs decay events $\sim 0.2 \times 10^3$;

- Two reconstructed high-p_T **photons**:
 - Pointing towards a single vertex;
 - Combined mass ~**124.7 GeV/c²**.
- What was, **more likely than not**, produced in **this** collision event?

Let's see!: at 124.7 GeV/c² ...

- ... the # of SM background events $\sim 1.75 \times 10^3$; ... the # of Higgs decay events $\sim 0.2 \times 10^3$;
- This single event is ~**9x more likely** to be a *random* SM background event!

The goal - finding the answers!

- The SM may by self-consistent, but it still has internal unanswered questions;
 - What is the origin of the specific masses of the fermions?
 - Why are said masses so different between generations?
 - Why are there (and, indeed, are there?) *only* three generations of fermions?
 - Are the neutrinos Majorana or Dirac; is their mass-hierarchy normal or inverted?*
- In total the SM has 19 (26*) free parameters:
 - Irreducible sets of 7 free parameters from the electroweak sector;
 - 6 quark masses and the 3 angles and 1 complex phase of the CKM matrix;
 - \circ QCD renormalization scale and the Θ -parameter, arising from the strong CP problem;
 - 3 masses and 4 parameters from the PMNS matrix from the neutrino sector*;
- These must be experimentally determined and input into the SM!

* - technically the neutrino sector is already an extension to the SM!

EHC Run 3 - a great time to join *hep-ex*

LHC: Runs 1 to 3 will total \sim 300 fb⁻¹ HL-LHC: Runs 4 to 5 will total \sim 3000 fb⁻¹ !!!

Sh
Pr
Io
Co
Ha

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning

- In 2015, ATLAS reported a 3.6σ excess at 750 GeV in the di-photon spectrum!
- Could this have been a heavy Higgs?
 Could this be proof of Supersymmetry?
- CMS data reported an excess at 2.6σ!
- Surely this is a major discovery!

F particle

Source: ATLAS collaboration

- In 2015, ATLAS reported a 3.6σ excess at 750 GeV in the di-photon spectrum!
- Could this have been a heavy Higgs?
 Could this be proof of Supersymmetry?
- CMS data reported an excess at 2.6σ!
- Surely this is a major discovery!

F particle

 Prompted 500 theory papers on arXiV in the span of ~2 weeks! Massive hype in media!

BBC Sign in	Home	News	Sport	Reel	Worklife	Travel
NEWS						
Home War in Ukraine Coronavirus	Climate Vide	eo World l	UK Business	i Tech Sci	ence Stories	
Science						
Has the LHC particle? By Paul Rincon Science editor, BBC News website © 5 July 2016	disco	vere	ed a r	lew		

- In 2015, ATLAS reported a 3.6σ excess at 750 GeV in the di-photon spectrum!
- Could this have been a heavy Higgs?
 Could this be proof of Supersymmetry?
- CMS data reported an excess at 2.6σ!
- Surely this is a major discovery!
- Prompted 500 theory papers on arXiV in the span of ~2 weeks! Massive hype in media!

- Alas, with more data taken, the bump disappeared entirely!
- We must be careful with our announcements!

BBC Sign in	Home	News	Sport	Reel	Worklife	Travel
NEWS						
Home War in Ukraine Coronavirus	Climate Vide	eo World l	JK Business	Tech Sci	ence Stories	
Science						
Has the LHC particle?	disco	vere	d a n	ew		
By Paul Rincon Science editor, BBC News website						
() 5 July 2016						
<						

A true discrepancy?

- Measurement of the ratio of B-meson decays into a kaon+muons and a kaon+electrons;
- Corrected for mass should be == 1;
- Multiple measurements pointing in the same direction; >3σ significance;

• This is a tentative evidence of BSM physics! Lepton non-universality;

- Must be cautious as this could also go away!
- Personal opinion tantalising! A genuine chance of New Physics!
 (but <u>rumours</u> are swirling that this is less prominent in higher q² regions)

Source: <u>CERN courier</u>

A true discrepancy?

Thank you

Institute of Particle Physics and Accelerator Technologies