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At Saaremaa summer school-2022 | gave a sketchy overview of the basic ideas and principles of Quantum Field Theory, disclamer
of the history of hadrons and quarks and, finally, of Deep Inelastic Scattering processes that allow us to probe them.

That was a sitcom *. Continuing within entertainment vocabulary, this year | decided to choose thriller **.

| am well aware that some of you are not prepared to go through such an ordeal unharmed.
| envisage three (not mutually exclusive) possible outcomes: SBC. You're likely to be Scared, sooner or later you might get Bored,

or you might start feeling Curious. My C bets are modest, but | still think it's worth a try.
| felt a strong urge to show you how theoretical physics works.

1973 marked a major breakthrough in particle physics: Quantum Chromodynamics has been invented.
QCD is routinely referred to as the true microscopic theory of hadrons and their interactions.

To be honest, nowadays we are rather far from awarding QCD this honourable mention.

motivation

Unlike electromagnetic and weak sectors of the Standard Model where QF T methods provide us with amazingly accurate predictions,
ascension of QCD to the status of a legitimate QF T is impeded by the problem of colour confinement.

We are confident that strongly interacting particles do consist of quarks and gluons that carry "colour".
But we do not understand why (and how) the only objects that fly and hit detectors - mesons and baryons - happen to be .

We will celebrate the §oth anniversary of the theory-of-hadrons-to-be by "anti-QCD Llectures”.

The reason for this choice was twofold.

Curiously, it is the most important characteristics of strong interactions such as total cross sections, elastic and inelastic scattering processes,
the pattern of multi-particle production and multiplicity fluctuations, etc lie beyond the grasp of QCD as we master it today.

4 Under the magic spell of QCD, these important topics disappeared from the particle physics curriculum (for 5 decades!).

In this mini-course we will discuss qualitative picture of high-enerqy hadron interactions
that we will derive from the basic principles of relativity, causality and conservation of probability.
situation comedy
** a novel, play, or film with an exciting plot, typically involving crime or espionage

*

SBC : Scared (and/or) Bored (and/or) Curious


https://www.google.com/search?sxsrf=AB5stBgQt6m956eYNd7MiWUxzvbO_8I1iA:1688938353017&q=espionage&si=ACFMAn8hzZSJQsgXIYlkGc-z1vmpImIAqbZsNRzII9QMCNgNSUy4sSfw-V6A3Nta4zCvlMf9EsZBtJZy5XEvSNrVuqIqbbeS4A%3D%3D&expnd=1

The history of Particle Physics is that of never ending rush for higher and higher accelerator energies.

What do we need High Energies for?

* To be able to produce new particles, ever more massive

* To probe smaller and smaller distances in search of substructure

* To translate a cumbersome QFT picture into an easier to grasp
OM - and sometimes even Classical - language, in order to visualise
the structure of particles and the physics of their interaction

Turning energy into matter

Turning energy into transferred momentum

Turning energy into clarity q

3

heavier

’deeper

simpler




heavier

Turning energy into matter

The first obvious motivation for higher energy race is search for new massive particles.

Have you seen this relation? EF = mcz Is it correct? nop
Lk = WLC2 9)
2 mc T 5
? EO = mcC frue: — \/1 T EQ = mc-: internal energy of a massive particle
—v2/c e U SR : _ enerav of a particle at rest
_ 2
Ey = myc
: : . ADONE e+e- accelerator was 100 MeV
A couple of historic examples J/ W Frascati, | taly short of charm discovery in November 1974
H LEP (1989-2000) -> LHC
Nobel noble searches : SUSY particles (photino, gluino, zino, wino, squarks, sleptons, ...)

H', Z', lepto-quarks, heavy neutrinos,...

High enerqgy is a necessary (though not sufficient) condition for new discoveries.
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deeper

Turning energy into transferred momentum

Large collision energy allows for large momentum transfer.

When we speak about “ large momentum” we do not mean large values of energy and/or 3-momentum components.
Those depend on the reference frame. What we always have in mind is an invariant quantity - the Lorentz square

(P —1) = (q)° =q5 —d° =¢°

It is important to keep in mind that in QFT interacting objects do not like to exchange large momentum. do 1
Small-distance-dominated processes are rare. dq? g4

% It is large momentum transfer processes that serve as microscope, allowing us to study internal structure of matter,
with strongly interacting particles - hadrons - being the primary subject of interest.

Classical example of such a microscope is Deep Inelastic lepton-hadron Scattering (DIS)

which reveals quark-gluon content of a proton and how it evolves with the "resolution” Q2 — \qQ\ :

Thanks to Asymptotic Freedom, the quark-gluon and gluon-gluon interactions at small distances (space-time intervals)
stay under quantitative control by means of perturbative QCD (expansion in small coupling Cg).

This is the realm of rare "Hard Processes".

Meanwhile, the bulk of hadron interactions are peripheral and do not penetrate the depth of matter. '(ﬁ

d

Essential distances here are large, pQCD fails, the language of quarks and gluons is hardly justifiable.

. (mark: | did not say inapplicable)



The nature of Relativistic Quantum Field Theory is paradoxical.

On one hand, its dynamics is undoubtedly complicated.

On the other hand, it turns out to be extremely restricted.

Quantum Physics is inherently complex.  But this is only the "first level" of complexity.

In Non-relativistic Quantum Mechanics we at least know what objects we dealing with, and how many they are.
While in the context of Relativistic QFT we don’t have this luxury. Here the number of the objects involved fluctuates.

Any problem becomes not simply a multi-body problem but the one with indefinite number of “bodies™!

This is a direct consequence of Relativity, and it significantly complicates the picture.

Meantime, the same Relativity provides powerful tools for simplifying the description of certain problems.

And this applies, in the first place, to high energy interaction phenomena

Physical Observables are frame-independent (relativistically invariant). Physical interpretation is not!

"The Physical Picture” is revealed in all its glory in high energy collisions.

The aim of our discourse - | Turning energy into clamty

We will dive into various aspects of this strange but true declaration:

I. simplifying the high energy interactions picture  (resurrecting the notion of classical impact parameter)

simpler

2. reducing 4-dimensional dynamics to a product of complementary (longitudinal and transversal) 2-dimensional worlds

3. replacing Quantum Field Theory battlefield by Quantum Mechanical terrain

BUT ﬁIQST s
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no joy without suffering... .

Analytic functions




analytic cons

Quantum physics - from the QM wave function all the way to QFT - is the world of complex numbers and functions.

Functions we are dealing with in physics, and in QFT in particular, are analytic functions

Makhs = the art 0{: cheating the rules (cons, codified)

An example of a perfectly legitimate double stunt : (14+34+94+27+--) = VT

Looks crazy but can be justified, unambiguously, using the analytic continuation trick.

Amalvj&@ continuakiown is a trick of making sense of meaningless math constructions.

O
1 1 1
Generalise : 3 -> 2 Z 2" = 1 _ ~1_-3 9 The r.h.s. make sense everywhere but z=1.
n=0 2= Similar story with the function
O
. z—1 —1t |
How to make sense now of (—=1/2)! =/ ? ['(z) = /0 dtt e n!=1I(n+1)
which is well defined by this integral for

ol /OO Jp 4ot _ /Ooﬁe_t _ Z/Ode —a?_ /+OO - any complex value of z as long as Re z >0

We justified our double-con having analytically continued

400 +00 27 < d(r2) 1. series beyond its convergence radius |zl<1
= dx dye=2" v = do e~ "’ . L
oo oo 0 0 2 2. a function n! from positive integers to any z




walking the plane

Geometric series is too simple an example. Replace it with general Taylor series > . f[”](zo)
f(2) =) an(z—2)", an =

n=0

Knowing the value of the function and of all its derivatives at some point Zg n!

we expand our knowledge to all points inside the convergence circle |z — zg| < R..

Then, constructing Taylor series around a new point inside this circle, we may explore the function further from the initial point.

In our example, we won't be able to pass to z>1 : since the radius of convergence of the
series shrinks when we approach the point z=1 where the function we examine is singular

" . 1
0 1 SN
2 =1
n=0
A
The head-on attack fails”? Make a flanking manoeuvre by diving into the complex:plane 2 = T + iy
Y 4
o060 ......
o h ‘A
O C » X
0 1

This way one attempts to amaljﬁtau,v cownbinue the function from a limited dorf\ain
(vicinity of one point) to the values where the original expression did not make sense.

One succeeds in uniquely expanding all over the complex plane when the function ha!f)pens. L@'Have
isolated singularities like simple poles in z, which is the case in both our examples: -~ "
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success not guaranteed

Look, e.g. at f(z) = (1 — z)*/?

Point z=1 looks harmless: f(1)=0 Still, this is a singular point! (No Taylor series around z=1)
How to continue this function?

OO
n(n —1
Recall the Newton binomial formula: (1 — )" =1 — nx ( 5 )513‘2 + ... = Z(—x)kCS
pinatorial coefficients CE = —° _ T+ o <1
combpinatoriail coerricients n — k'(n—k)' — k'F(n+1—k) converge for |Qj‘ <

To generalise to non-integer n, replace factorials by the Gamma-function, resulting in series

What will happen if we attempt to pass by the singular point z=1 in the complex plane as we did before ?

Y4 o Fhe value d@.pemds On Another way to treab this "confusion” :
° ”....°'-A—i\/§ the cowntinuation P&H& ; upgrade the habitat of our function from
o ° ° o > the complex plane to Kiemania surﬂf&c@.
0 1 2 .,.’+i\/§ * W ain't a function - two complex planes glued together along the branch cut
00pS ...

To define it, we are forced to cut the plane along the ray

Our function branches above z=1.
1 <z< 4+

O

—
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Top sheet Branch point

“Escalator”
(where branch cut
used to be)

Bottom sheet




math summary

Analytic functions is a small subset of functions in the complex plane :  f(z,y) = f(z +iy,z —iy) = f(2,X) =—p f(z)

This seemingly harmless "detail” has truly dramatic consequences :

vectors V Ref, VImf with V = (dd , dd > correspond to two-dimensional flow(s) of incompressible liquid divVf = Af =0
x’ dy

mapping Z — f (Z) is conformal - preserves small shapes (angles)

an analytic function must have singularity(ies) somewhere in the complex plane (with the only exception f(z) = const )

. . . L dz f(z)
knowing the function on the border z € (', you get it everywhere inside:  f(w) = 5 (Cauchy)
o 2Tz — w

an integral btw two points does not depend on the integration path (provided no singularities are crossed while deforming it) ’

* % b o % %

an analytic function is fully determined by its singularities

TIime to ask : What was the purpose of a bungee dive into complex analysis ?

Scattering amplitude is an analytic function of its variables: energy causality  (no effect before cause)

momentum transfer relativity (crossing)

Its singularities are determined by the physical spectrum of the theory unitarity (conservation of probability)
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Analyticity
and
Causality



Look at two-particle scattering in the coordinate space @—iPO(yO—QTO) +ip - (y — x)

400 » - -
. d*p [ dpo exp{—ip"(y — x),} : )
Free particle propagator Dly, —z,) = / (27)3 / 2w m? — p? —ie A(ry1,x2;T3,74) = /
Ar"/ -‘- . / g J.“\--_____
. (m* +p*) — pg A T

b
4;

D(yi — Iz’)d4yi}-

depending on time ordering of x and y, reduces to the product of free wave functions :

/f(yl-'y?- 3/3'- 3{4){

=1
—1FE xg +1p-x . ¥
e’ 0 : L
wp('r) \/ﬁ \/ T P D(' - ) o d3p exp{—-zp"‘(y - 'l’)#} - d3P _,,)*(',,'-) oy >
I Tt = (27)3 2p0 ) (2n)3 P I ’ g0 =0

d3 )

In the momentum space, the interaction amplitude takes the form And for the outgoing lines, D(y, — x,) = / : 2733 Up () To > Yo

M(p;) = / F(y1. Y2, y3, ys) e Py tPv2) Hipsystpaye) T T gy, For nearly forward scattering ( P1 & P3. P2 & Pa)

M= (27 46 + o — —n /eipl(ys_yl) U12° d4'
For causality to hold, we must have (27)"6(p1 + p2 — p3 p4). f(y13:p2)d y13

fly) = (wo)d(yy) - fr(y) + foly),

M(E,) = / d'y f1(y) - 9(yo)9(y2) €Y = / dy /\/_, dt e Fr(6=012) £ ()
. . JNy -

where fo should not contribute: / d*y fo(y) exp{ip1y} = 0 The theta-functions ensure that the phase of the exponent is positively definite:

for a physical momentum  p1 = (\/7712 +p?, P) t>0, t> \/22 +p1 = |z| > vz = (t —v12) > 0.

As a consequence, M(E1)=M(s) is a reqular analytic function in the upper half-plane of complex energies Ei.




Reversing the logic:

+0C :
i W to h M(ImFE — +o0)| < exp(yImFE for arbitrary ~ > 0.
f(t) — / dEe zEtM(E) e need to have | ( )l p(l ) Yy 7
J—oc Otherwise, the response would not vanish at small but finite negative times —~ < t < ().
Conclusion: for causality to hold, amplitude should have NO singularities in the upper half-plane Im E >0 ( be regular)

This is not the end of the story though.

In real world physical amplitudes cannot have singularities anywhere in the complex plane of energy, either Im E >0 orIm E <0.

Moreover, the same applies to all variables a physical amplitude depends on, be it energy or momentum transfer.

The reason for that is Special Relativity that physical phenomena must respect. Interaction amplitudes being no exception.

o 4-vectors = (CtQ Ly Y, Z) — (Ct7 I') pr = (E/C;patapyapz) — (E/C7 P)
Relativity . g
. space-time position vector 4-momentum vector
swift recap ) ) " , , , ,
Lorentz invariants (") =t —r (p") = FE° —p“=m
space-time interval (c=1) squared mass
scalar product of 4-vectors p“xu =Ft— (p : I‘) e_iEt‘|"é(P°X)

phase of relativistic wave function
"itnvariant energy "

= (p1 +p2)* = (B1 + E2)* — (p1 +p2)* = (E%C’m') + Eéc'm'))2 centre-of-mass frame p1+p2=0

= m7i +m5 + 2(p1p2) — m% + m% + 2E1mo laboratory frame P2 =

14



Let us calculate the number of independent variables that characterise a 2 -> (h=2) process (h-leg amplitude): crossing

momentum components
- overall energy-momentum conservation

- on-mass-shell conditions _ . _ _
- subtract 3 rotations and 3 boosts For example, 2->2 = 2 invariants, 2->3 = 5 invariants, etc.

4(n-1)-n-6 = 3n-10

Mandelstam variables for 2->2 scattering Mandelstam plane

P, P, s = (p1+p2)%

t = (pr—p3)*; s+t+u=4m’,
. P 2

u = (p1—pa)

143 —=244

One amplitude in different regions of
its Mandelstam invariants s, t, u
describes 3 different processes
related by relativistic crossing

— _ \
1+4—)-—3+2/ N //\ 142 —=3+4
\ /

Crossing reactions on the Mandelstam plane

So, each of the Mandelstam variables s, t, u
plays a role of energy

In one of the cross-channels, and therefore

IS the subject of consideration for causality.




Consider electron-photon scattering process as an example

Mandelstam variables

So our causality consideration directly applies to it.

S translates into the incident photon energy.

in the lab. system (electron at rest)

B, + m?
3
EZ(1 — cos ©)
‘(g‘:heck)

Fix the momentum transfer variable at some physical value (t<0) 2

and study the amplitude A(s, ) as a function of s .

Physical region of the s-channel starts at s = spin ~ om? —t
and extends to +0Q.

Recall that in the causality check, to make sure that the effect follows
the cause, we had to integrate over energy (s) from minus to plus infinity.

U= —8—1= Zmz

At negative s we hit the physical region of the crossing channel ©u > Umin
where our amplitude describes photon-positron scattering with u as energy.

Look now at the complex s-plane @

; .
. . . causalit
No singularities "upstairs” l S 7

Omeeee——

Neither "downstairs" Smin

w! causalityT

Compton
scattering

t=0

forward



We conclude that interaction amplitudes may not have singularities anywhere in the complex plane of any of its Mandelstam variables.

Singularities may lie only on the real axis.  What are these singularities?

First of all, the amplitude has a pole at s = M= with M the mass of the s-channel exchange particle.

2
For example, a pn scattering amplitude has a pole at the deuteron mass: b D Ay (s) = A A lreg] ()
8 pn _ 2 !
@ (mp+my) . . ST : : : :
b l t This pole singularity lies outside the physical scattering region
O O since deuteron is a stable particle, being lighter than p+n.
MD2 physical region ( N )2
TN Tl
| | TN ®
The same can be said, e.g., for pion-nucleon scattering: N >—< !
__________ e -
ST s m>. physical region
',' e N, \\ . N
)\2 /\2 /\2
- m2—s Tm2—t - m?2—u

L 4

-
~ -
- -

- -
e s s s s s

v,
@
-
Y
-
°
°
-
@
°
v,
-

»
e

=
v,
-
Y
-
@
-
e
-
-
°
-
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-

T

2m :
the NQM Born scattering amplitude fB(q) = I d°r e "1V (r)
V(r) o« 777, r — 00, power tail = — ing , no Van-der-Waals
A / Y strong forces,
V(r)=—e™ ™, Yukawa potential => fp x | = since all the hadrons

are massive




singularities

Any singularities other than poles around?

Poles are characteristic for the so-called Tree Graphs,
Tree graph can be separated in two pieces by cutting through one line the simples of which we have drawn above

~——
1 ._< 3 pole in the S34 A2 A2 \°
: 1 ) Mandelstam " S134 T2 _ g T2t  m2 —u
---- 5 invariant mass —

2 -—( 6 >567
<

S67 Graphs with Loops
7 n1 P3+q D3
_ _ 1 4-integral over g three loops
What happens when more than one particle is exchanged? P3—P1+q I four l00ps
= one loop
P2 j !
—patq
A Feynman diagram with n internal lines has a general structure
with £ the number of independent integrations - loops.
The analysis of such multi-integral jon is rath licated A /d4qld4q2”'d4q‘ :
e analysis of such multi-integral expression is rather complicated. Apt = —
y J " [(2)44]" (m% — k2)(m5 — k3)--- (m2 — k2)

The answer, however, turns out to be quite compact and transparent.

Landau rules
: In each loop, ascribe to each internal line i a real number o; > 0.

resembles Kirchhoff current law equations for electric circuits,
with momentum ki playing the role of the current, and a;i that of resistance.

Z ok =0  along each loop

showing that each internal line either has to have the on-mass-shell momentum
or should be dropped from consideration (shori-circuited).




singularities (character)

The character of the singularity is determined by the critical number & =4/ —n — 1

J— — Simplest example: one loop, two lines

A(s) o< (89 — 5)5/2 for £ odd or negative k, 5 :j K,
S: k, : : K,

x (sg — $)¢/%1In(sg — s)  when E is even and positive

S — p2 S (ml + 771.2)2 - two-particle threshold

According to Landau rules, this applies to any amplitude that has a 2-particle division, A \/
that is, can have 2 real particles in the intermediate state (Feynman diagrams be damned) E=4-1-2—-1=1 == (8) X VS0 — S

@ my (mN+ma)f
/physical region

We see that the interaction amplitude in the physical region
Is always complex and is actually sitting on the branch cut

pole branch cut
So, the answer to the question "what sort of singularities the amplitude may have in the complex energy plane" is as follows:

Poles (at particle/bound state masses) and branch cuts (starting at n-particle thresholds) on the real axis (!)

Landau rules produce more sophisticated singularities too.

‘v /

_, t channel Q& K
So-called "anomalous singularities" appear near the physical region ; the box graph g @plus curve”
and are typical for loosely bound systems (see, e.g., deuteron scattering). §

Q°<0 | v

my +m, — Mp =e<<m(m=mp>~my,)

P P ) .
n Qp =~ 16m-e < m~.
=

D D

Anomalous sinqgularities are plentiful in the physics of nuclei in general.

Equation for the Landau surface
(s — 4m?)(t — 4m?) = 4m?




In 1952 the first pion beam experiment by the Enrico Fermi group demonstrated
a rapid growth of the pion-proton cross section with pion beam energy.

Discovery of the first baryon resonance A (1230).

Modern compilation of the 7T cross section shows multiple bumps and wiggles.
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This was not expected by Fermi & Co (neither by anyone else).

TTD interaction amplitude being an analytic function
in the complex energy plane, it was expected to
change smoothly at the scales of the order of

Beam Energy

Status as seen in

masses that determine position of singularities
on the real axis of the energy variable.

Threshold singularities are pretty mild.

If they were the only driver of the behaviour
of strong interaction amplitudes, the physics

of hadrons would have been boring ...

Apparently, we are missing something.

There has to be a hidden reason for
interaction amplitudes to behave furiously.

And here our dive into analytic functions will start paying backe

Particle JY  overal Ny | N7 | Ny No Nw AK XK Np Anx
A(1232) 3/27  skkx sorkk | kokokk F

A(1600) 3/2+ g KoKk * %k 0 o * oKk
A(1620) 1/27  skxx Kk Kk r kkk kKoK
A(1700) 3/27  kkxkx sokkk | skokokok b sk KoKk
A(1750) 1/21  « x i

A(1900) 1/27  «x Kk Kk d $k k% ok
A(1905) 5/27  swkxxk srkk | kokokk d kkk Rk Kok
A(1910) 1/2+ g o Kok kK e * " 5K
A(1920) 3/27  sxx %k Kok ok n sk k Kk
A(1930) 5/27  skx *ok ok

A(1940) 3/27  *x % * F

\%(1950) 7/2" ****\ kokkk | kokokk 0 kkk ok kKK
(2000) 5/27  *x r K%
A(2150) 1/2°  « X b

A(2200) 7/27  * * i

A(2300) 9/27  xx Kok d

A(2350) 5/27 x * d

A(2390) 7/2T7 X e

A(2400) 9/27  *xx ok n

|A(2420) 11/27 s l * kKoK

A(2750) 13/2  *x *

A(2950) 15/2F % fok



How ko force a function ko change fast?

Take as an example of a respectable function of a real argument x

ZE4

What is the origin of the "bumps" near x=-2 and x=3 ?

((x—3)?+ 1)((z+2)? + 0.09)

Our function is regular on the real axis, but has poles in the complex points

r = —2 :: ______ and Tr = 1

------------------------------
-y
-
- -
-
-
-

These complex poles affect the behaviour of the function

the more, the closer to the real axis they are located.

Looks quite similar to " 77D wiggles" and tempting.

However, it is clear that such a construction does not solve our trouble :

-
-
-'——
-

the fundamental principle of &ausaii&j forbids interaction amplitudes to have any singularities (poles included) at complex energy values.

Recall that, having branch cuks, the amplitude lives not on the complex plane
but instead on a Riemanin surface which consists of more than one "sheet".

A pole at complex energy will not violate causality if it sits on the unphysical sheet !

This is exactly what resonances do.

Kesowhalce is an unstable particle that corresponds to a pole in the interaction
amplitude having "complex mass" and sitting on the unphysical sheet (under the cut).

Difference between resocinainces and stable Par&ides is rather elusive.

v

It is another fundamental principle - uhi@&ri@v — that takes care of it.

branch point

)

branch cut

physical sheet




