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Unitarity.
Partial waves.

Resonances.




Yesterday we deduced the implications that causality imposes on interaction amplitudes. unitarity

Another basic principle of quantum physics worth exploring is called unitarity.
It simply states that the sum of the probabilities of all possible outcomes of any event must equal one.
The name derives from the fact that the matrix S that relates distant future of a process with its remote past, V., = SV;,,

must be unitary : from conservation of probability, |V o.¢|* = [W¥i,|%, follows |S|* = STS =1 . Y SiSca = bara
In terms of the "reaction matrix" T, S =14 12T whose elements are transition amplitudes from the initial state a to a final state b,
Ty, TJr =Ty, — T, =1 (TTT) - In a time-invariant theory ( T,;, = T',) this results in the unitarity relation
e N
2Im Ty, = g T; T
. b ca
Top = (27 Z Pi — E k; H H D ALELLEL Lorentz invariant matrix element ... ..
vV 2 \/ ZAO R - - i,
ica jEbDb i€a J o :
...... Lorentz invariant phase space
The Unitarity relation becomes e of the intermediate state ¢ -~
Mot Mo 5 L [ Mool 1012) Min (b 1T @) Ppy 1
4 c(4
SIC! The same matrix element and the same phase space differential are. p’?esent in the Differential Cross Section A+B -> 1,2,..n
1 "‘ 2 h
Th h
z-boost-invariant flux factor do = 2E . 2E i |M(PA, PB — {Pf})| dHn e flux and the p _ “ase s.pace |
A2Ep|vg — v factors depend on which particles collide
J =4|Espp — Eppal > (initial), and which are produced (final).

~ 28 The matrix element is universal !

Choosing b=a - scattering forward - yields the "Optical Theorem" [2 ImM,, =J- U?ot




We saw that amplitudes have threshold singularities and become complex above the threshold.
For example, the first threshold singularity of the 2 -> 2 scattering amplitude

appears when the colliding energy becomes large enough as to allow for S x A2
production of two real (on-mass-shell) particles in the intermediate state >

1
Branch cut is characterised by discontinuity of the function around it: AA(z) = ¥ A(z +10) — A(z — 10)

@ A (2) | Az+i0)
If a function is real before the cut (as \/zo — z is), then its values above and below the cut become complex conjugate , p——
2 1 A(z-i0)

and discontinuity of the function coincides with its imaginary part .

Imagine a graph with n (virtual) lines in the intermediate state.
Integrating over kg components of N—1 loop momenta

we can put all but one propagators on-mass-shell

1T 1 1 - 211 (m?2 — k?)
A Q I 2i [my — (po +ie— Y koi)* + ki mg — (po—ie — ) koi)* +K; | B 21

Have we solved the quest ! Almost ...

Above the threshold the grey blocks are complex themselves ...

?
ﬁ*j\)/\—:d how to deal with overlaying singularities ?
"




To analyse the structure of discontinuity, we separate 2-particle irreducible blocks:

A= T O T O H -
Then, using the algebraic relation

A(AB) = A-(AB) + (AA) - B,

arrive, by induction, at

AA= ) Ff---FF Fy ---F; = A(s + i0) A(s — i0).
i, k=1 - K- - T

Summing together the discontinuities across n-particle threshold branchings, we obtain

AAy_o(s) = Y Tals)Aon(s)A3_,(s)

This is nothing but the unitarity relation !

O Our (Landau) analysis of singularities automatically yields unitarity.

O Unitarity assures that position and the nature of singularities
is determined by the physical spectrum of the theory.



unitarity and singularities
Have we forgotten about resonances!? on unphysical sheets

Not at all.  Actually, it is unitarity that will help us to understand their origin and properties.

How to examine content of unphysical sheets?  Turn to the unitarity condition.

Consider, for simplicity, moderate energy below 3-particle threghold where 2-particle unitarity holds  (4m? <s < 9m?)
1 t2
s

/

> AL AL \

Written in full,
| | | d4 1 A | o . |
A(s + e, t) — A(s —ie,t) = 1 / e )95(771,:‘; — k“)é(mg1 — (p1 + p2 — k)%) -A(p1, p2, k)A™ (ps, ps, k).
LT )~ |

Or, in terms of invariants, Dy = p1ps — k

A(s +ie,t) — A(s —ie, t) = // dty dto K (s, t1,t2) - A(s +1e,t1)A(s — i€, t2)
We may look upon it as an inhomogeneous integral equation for A+ .
Imagine we have solved it (which we will, shortly) and derived

A(s +i€) = F (A(s — ie)) 5 » A.
. - )

Then, by giving s a negative imaginary part, we will have A. staying on ' ¥
the physical sheet while the argument of A+ dives under cut and starts ; / A_
walking over the first unphysical sheet related to the 2-particle threshold ! ' -~



partial waves and two-particle unitarity

Unitarity condition is diagonal in conserved quantum numbers.
In particular, in Angular Momentum.

Cast the amplitude in terms of partial wave expansion

A(s, t) = Z(QE‘ + 1) fe(s)Pg(cos O)
£=0
and substitute it into the 2-particle unitarity condition, P1 k Ps
X%
] L s,c080,)A" (s, cos0,) + o

ImA(s, t) = Sn/s | An (s,

df Onm
Legendre polynomials are orthogonal to one another, / 2 nlcos @1)Pm(cos O2) = o5~ n 7Fn(cos©)
Therefore, the r.h.s. becomes g
|k| Z f[ f 2[1 + 1)(252 + 1) /dQP[ (CO&@l)P; ((30892) — |k| Z f[ S)fg S)(Q[l + 1)P[( @)
8my\/s = 47 ;

£y,£2

Comparing with the l.h.s., we arrive at the algebraic relation for partial wave amplitudes replacing the integral equation for A:

k 1k
Im fo(s) = 7fe(s)fi(s). i = = s = =
| msils) = rh@REN i =) = o= Lk
For bookkeeping sake:
T 9a(mZ + 2 T 72 — A2
¢.m.s.momentum = k| = Vs = 2elmg 4-27\7;%) S e \f For equal masses, k. = L 24"’



[ Im fe(s) = 7fe(s)fe(s) ]

An inverse transformation

1
fo(s) = l / dcos©® FPy(cos©)A(s,t(cosO))
—1

—

On the Mandelstam plane the integral runs along a line s = const

The partial wave is complex above the threshold,
(as well as below s=0, due to t- and u-thresholds)

The partial wave is real inside the grey triangle, below s=4m/?
Therefore, its Im part coincides with discontinuity,

%[fg(s +i€) — fols —ie)| = 7(s) fu(s + ie) fy(s — ie)

and we obtain A 4 AN
o
4 )
fo(s — ie) When/if the partial wave amplitude on the physical sheet hit a finite value
fe(s +ie) = 1 — 2i7(s) fo(s — i€) (=) = | a pole on the 7st unphysical sheet (related to 2-particle unitarity)
N Y : 2i7(s) appears, which corresponds to a resonance with spin /

Threshold singularities make hadron scattering amplitude vary, Resonances make it rock and roll



Resonances are much like ordinary (stable) particles.

Contribution to the scattering amplitude : \ m o / > ——— < —
particle r

T

CL
/ \ esonance Mi —
> _
r Py(cos©)
20 + 1) fo(s) Py(cos® — APl — (20 +1
Z () Fi{ ) ( ) m2_—s
£=0 res
resembles the Born amplitude of the s-channel exchange of a particle with spin 0 = £ (!)
An important property of particle exchange is factorisation = Uay 28 O
Will the residue of the resonance pole factorise into the product of “coupling constants™?
In the case of resonance exchange, it is unitarity that takes care of it !
. L A 1 2i, - . . = : S |
Solution of the elastic unitarity :  fy(s) = 2ir(3) [C £ — 1] Generalisation to a multi-channel problem: fab = % S [ ab — ]
iT(s ‘a’
Diagonalise the scattering matrix: S, = UaCSCdL.TIb, Sed = Sclca. S = expl(2id,.).
Let one matrix element 57 have a resonance pole at s = M? = M7 — iM3.
M* —s .. —2ilm M?* .,
In the pole approximation, S; = = " e2iB — Z e?” 4 regular.
M?2 — s M2 —s
The pole contribution to the full scattering matrix becomes
—2iIm M? 2iM3
Sab =~ Ug . 22 U Ib = Ua . 22'3 Lrgl 1
M? — s M? — s _ IS 1
fab — 1. [ ab — ]
r 2 e . 21 \/ToTh
Uax M3y 55 Up 9a Gy 23

Jao = =M m T MP—s©




The coupling constants  can be redefined as real (as long as S, = Spa )

a = Ua' ' Ua
N , 4 . o
The resonance contribution is similar to the Born diagram for spin-{ particle exchange: A™ = 9a(2 ::[21)}){(2) b (2B

4

Relation between ImM2 and the coupling constants also follows from unitarity :

4

3 X
Z U 1U =1 — Z T agg — Z T @> T = A"f“zz = MiI'. conservation of probability !
a a /' Y

L4
L4
L4
L4
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Partial decay widths sum up into the total width of the resonance.

[ —

2V

o
=

Some of the decay modes may happen to be "invisible" - undetectable experimentally. =
=

30 ALEPH

Nevertheless, they contribute to the total width - DELPHI
and therefore affect the production cross section - the "line shape”. L3

. OPAL
Famous example - extraction of the number of light neutrinos 20 -

from the shape of Z-boson production at LEP: 7 — v N, = 2.9840 4 0.0082.

| ¢ average measurements,
error bars increased
by factor 10

NB: we call Z (W,H),n, m(K,D,B), p,7 stable particles. 10
In fact, all of them are resonances.  Stable w.r.t. strong interactions! |

One day proton may well become a resonance too. It better does...

86 88 90 92 94
E. [GeV]



We have obtained resonances from 2-particle unitarity.
Continuation of multi-particle unitarity conditions is technically much more difficult.

The answer, however, turns out to be physically transparent.

Schematically, 1—7/\_ - \_ ; ; \\_ ng \\_

|~ LT AL —\/—xA\/L T

The new ingredient, the amplitude  Ao_.g , satisfies its proper unitarity relation:

[} i wl i ul P i Wy G T/ Y

- — | = ) = =+ |

AL AL T AL LT AR T
irreducible singular
R W A voil e A vl €5 5
TR e AT At s

The first - irreducible - term gives rise to new 3-particle resonance poles.

The second - singular - term generates non-pole singularities on the second unphysical sheet...

Namely, branch-points corresponding to resonance-particle
and (at still higher energies) resonance-resonance threshold cuts.

The full analyticity image of the amplitude :
poles - particles and resonances -
with all other singularities being generated from them via unitarity.




Hunting for resonances, we have introduced partial wave expansion (small energies)

It turns out to be extremely useful for the analysis of high energy processes as well.

At high energies many inelastic channels open up : Als+ie)  Als—ie)

Img A(s,t) = Ay(s, \/4:\:> \(
P OS=OF

| partial waves and high energies

For t=0 we have sum of positive contributions, yielding ImA(s,0) >~ 50, s > ;1.2.
How to get an amplitude increasing like s ? Partial waves are limited from above :
OC
ImA(s,t) = ) (20+1) Im fi(s) Py(2) 0 < Im f,(s) < 167
(=0
Therefore, the source of increase - large number of “large” terms (’)(1)
To estimate the characteristic number of large partial waves, ¢ < fy(s),
we introduce the impact parameter : i Vs —4p2 1
£ = I\‘.Cp. with k. = 5 ~ 3\/: - the c.m.s. momentum,
and define the interaction radius through the relation lo(s) = ,@

{ Imfg(s) — 0(1) for 0 </ f() (“saturated”’ partial waves)
Imfy(s) < 1 > L

classical analogy:
p < po projectile hits the target

p =>> pPo projectile misses it



elastic scattering

One can estimate the forward scattering amplitude by simply truncating the partial wave expansion :

Im A(s, t) = » (204 1)Imf(s)Py()
(=0 (at t=0 we have Py(1)=1)
Loer Lo

ImA(s,0) = Y (20 +1)Tmfo(s) ~ L5 X s-pg [ Trot ~ P ]
¢=0

In relativistic theory (in marked contrast with NQM) the hadron radius may vary with energy, po = po(s)
Moreover, it has to (as we shall see shortly).

But before we have to discuss qualitative picture of elastic high energy scattering

Large angular momenta £ ~ {( translate into small scattering angles O~ 1/ly = 1/kcpo

Typical momentum transfer stays finite while energy increases :

—t ~ (k.©)* = Po 2~ Hence forward (diffractive) cone

i | - Backward scattering

dcos 8 - a bizarre phenomenon specific for relativistic theory and unimaginable in NQM .

To see that such an unintuitive thing indeed happens in nature,
we have to exploit analytic properties of the interaction amplitudes.

1 COSO



Complex analysis in full swing. Take a deep breath.

Angular momentum enters NQM Hamiltonian analytically via the centrifugal potential

As a result partial waves [¢ turn out to be smooth functions of £.

In relativistic theory there is a reason for fg to oscillate...

To single out this oscillating behaviour, we should look into analytic properties of A(s, t).

Partial wave is given by the integral over 2 = cos © from -1 to +1

fio =5 [

1

00+ 1)

dcos© Py(cosO)A(s,t(cosO))

e y

The first step - to replace integration over real interval by a contour integral in z-plane. ..

Introduce a cousin of Legendre polynomials - "Legendre function of the second kjna"*-as

.
at®
“““
-
at®

i Integration over real interval -1<z<1 gets replaced by the contour integral

Py = — [Qg(z —+ iE) — Qg(z — 26)]

718

The amplitude as a function of T (Z) has unitarity cuts
t-channel cut at ©tmin & UW=channel cut at U>Umin

2- tmin

71 < z < +00; z1 = 14 X
s —4pu
| 2 - Umin

—00 < z < —29; z9 = 1 4 X
s —4pu

In our toy model

tmin = Umin = (2/‘)2

st
st
st

““

)
at®
at®
st®

% A

Qe(z) =

72

.
st
st
st

Backward scattering

dcrA

“' dcos 6

1 cos O

l /l dZ, P[(ZI)
'2 J_ - ol

1 o T e

E—

dz Py(z)A(s.

~

o

) =
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1 ——
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-
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since Qg(z) falls on a large circle, Q¢(z) ~ .z

we can "inflate" the contour |’ and
replace it by a sum of integrals around

the t- and u-channel cuts 1"



| oo e 1 with A3 =Im;A, A= Im,A the discontinuities
fe(s) = . [ dz Q¢(z)As(s, z) + - /7 dz Qe(2)Az(s, 2), of the ampfitude A(s,t) inthe t and U channels.
\ oo o =<2 j "l
replacing negative integration variable in the second term by 2z, = —2 > 29 > Q,"énd using the relation Qy(—z) = (—1)£+1Qg(z)
1 (1) '

fols) = £ / " dz Qul(z) Aa(s, 2) 4

m

/ dz Qu(z) 45, ~2u)

We are interested in the size of the cross section. Since O¢ot X ImﬁA/S let's evaluate the “imaginary part” (dlscontlnwty in s) of the p.w.:

" pst/

t=4u°

m

---------
L]
~
~
i~

Im fy = Tm f{ + (1) Tm £, where Tm f7'(s) = — [z Qu(=)pu(s.12))}

m fi(s) = — [ dzQule)paulsu(—2))

forward scattering : P,(1)=1

Ai(s,z=1) = Z(?f-l- 1)Im frlght Z Qg + ]?):Im left
4

)
1
|}

recall the box graph’

large angles (90°) ¢ Pan+1(0) =0 Pon(0) ~ (=1)" - 2/v/mn 5
2(dn +1) sright Teft ok X X
(—1)" Im J i fon
ez;n VT (’ 23 ~)~ P> )(7(.4 Py

- Karplus curve
backward (180°) ¢ P,(—1) =(-1) (s — 4771.2)(t - 4,"22) — Am?

again <== Jeftcut!




Compton

In NQM backward (large momentum transfer) scattering process implies head-on collision: ¢ A2~ 1/s

In relativistic theory there is an alternative to large momentum transfer :

o o . ° ° ) ° o ' .
instead of exchanging large momentum, colliding particles can swap their identities ! peripheral

: head-on
Example of such a phenomenon = QED Compton scattering. - \7 -

The first amplitude in the S — OC limit is negligible (one partial wave). \_/ _ \ / +

The second is peripheral interaction (many partial waves), €y ~ (\/s/2) /me

.. . 2
Finite momentum transfer from the incident electron to the final photon, u| ~m,,

means that at high energies Compton scattering occurs predominantly backward.

1 1 \° 1 1 on e L

s—m?  u—m? s—m?  u—m? s—m? iu—m?

In the high energy limit s ~ \t > \u\ the differential cross section peaks in a tiny angular cone of the size m — O, ~ Me | ke

q > 5 Practical application By shooting energetic electrons on ionised gas, one can convert Coulomb
S BN - bhotons into a well collimated monochromatic photon beam!
dcos®., m?—u s(m—0.)% + m?

and vice versa:  photons hitting electron gas produce collimated monochromatic electrons!

Please mark and keep in mind the word peripheral which will become the key slogan of the discussion to follow



Return to the profile of p.w. amplitudes in the impact parameter space (p = {/k..) Analyticity and interaction radius

In the physical region of the s-channel A(s,t) has no singularities in t . >

Therefore, the partial wave expansion series must be absolutely convergent : A(s,t) = Z(2€ + 1) fe(8) Pe(2)

=0
Moreover, this should be true for t>0 too, up to the first singularity !

For example, to = m7 to = 4m#

N N Tr Tr
for nucleon scattering; T for scattering of pions: 70 70

N N T T

21 Y Yy )~
2 =cosO =14 5 = cosh X . O = % * PE(Z) —~ ewe 4 e 14S) - e{\(tas).
s —4m »
m position of the first
Up to t <tp this increase has to be damped by an exponential fall-off of partial waves: t-channel singularity
2
€1 —fvao ., 2-10 ~ 1 4 X0 1 — ﬂw—
f€(8) — C(E. S) € X ) COSh X0 = 1 I S — 4772'72‘- | 2 | ‘ Xo_i ———— é T kc .
[Fel | .-
e N e
fe(s) = f(p,s) = C(p,s)e_p/ro, ro=1/vto.
\ ) (7)
exp s
warning: not to confuse the hadron radius 0 oo
and the fall-off parameter 7°() !




black disk

One has little to say about partial waves corresponding to impact parameters 0 < Og (S)

However, it is straightforward to limit them from above, from the first principles. Hadron interactions
General unitarity relation for the elastic scattering partial wave amplitude reads ("soft", "minimum bias")
2 : :
Im f€ == T ‘f[‘ + A(’ with Ag(s) accounting for inelastic channels. are close to this regime
Solution : fo(s) = 1 [776’(") e2ibe(s) _ 1 ] elastic scattering corresponds to ne =1, Agp = 0.
217 (8) “very” inelastic - to ne = 0, Ap >~ Apax = 4.
1 -
Total cross section : Oior = — Z(?E + ) Imfy =~ o (2€ 4+ 1) [1 —Tpcos(28;)] .
S TS ‘o
f. £ e T O¢l T Oin = Otot
1 O . g €T 1 O g e
elastic: o0aq~—) (20+1) [1 —.2mp cos(26¢) +.m; ] . inelastic: oin~-— ) (2(+4+1) [1 —’7'}50] .
4T8 ; ‘. ‘. 4T 8 . “
.. max 1 max 8T )2 2
upper limit :  [Im fy(8)]™ = () = 8T = Ottt < |Otot] = = — by = 2T g -

The fotal cross section is twice bigger than the fransverse area of the target.

And for a good reason: diffraction !

A forward wave s necessary to form shade behind the target

Maximal inelasticity hypothesis (1, = 0) : Tl = Oipy = %Utot = ’/T,og : QM scattering off a “black disc”




Froissart theorem

Total cross sections cannot grow as a power of energy.

To guarantee causality, we have to have amplitude to be polynomially bounded :
A(s,t)] < sV for s —
Take a rough model with pw. ¢ < {q saturated, and > £ - negligible :
lo(s)
A(s,t)] < 16m Y (20+1)|Py(z)] ~ bpefoxe® < g™NM (N = N(1)|,_y)

(=0
When t > 0, Legendre polynomials increase, and the sum is dominated by the last term.

Hence the estimate 0o(s) < ?h]s’
"
; 2
Ni\? (Imf) N _ Am
< 2 _ _l . < _— . Sy T 240 b.
Oiot = C:hl S, C = (2’“) 2 < ( o 4 < m2 m

A rigorous mathematical proof of the Froissart theorem (1961) follows from
(1) singularities of A(s,z) in 2 lie out'.s'ide the physical region of the s-channel, —1 < 2z < +1

(2) for finite |z| A(s, 2) is polynomial}ﬂ’ bounded, |A(s,z2)| < cs™Y .

We see that the interaction radius is allowed to logarithmically grow with energy... will it 2..




fast but furious

Because of the Lorentz effect,a “ball” gets squeezed into a “pancake” in the z direction (with transverse directions (x,y) unaffected)

relativistic projectile colliding beams
. -
V. a | ? |
1/ P, target at rest

Invariant "collision energy” :

s=(Pu+ P)? =m +mj +2(PaPy) ~2(EuEy—PyPy)  ~2Emy,  ~dAEL > (ma+mp)’

laboratory frame: Py, —=0 centre-of-mass frame: P,=—-P,

When collision energy increases, the flight-through (=interaction) time goes to zero. Interaction becomes actually instantaneous.

One can talk about a snapshot of a dynamically frozen incident proton, taken by interaction with the target.

The time “freezes”. It does. This, however, does not result in the physics of the process becoming automatically simpler.

Complexity of the problem does not evaporate, but gets rerouted into internal structure of the projectile !

The point is that long before hitting the target, a relativistic projectile acquires plenty of time to “breathe”
- to fluctuate into a system of virtual particles - and thus develops quite a complex multi-particle content.

Let us examine why and how this happens




a X Y a long live Hadron!

i
Imagine space-time picture of particle exchange G
5 P : .P P S 1 :B?<:L?g<yg<y?.
between a projectile @ and a target b
b -”'72 y2 — b
| ° ° ° ° e _ o At B AE—I
How to estimate lifetime of a virtual state!? Look at the energy mismatch btw intermediate and initial states
E E > 2 AFE — Eint.erm o Einit. — \/k‘l2 T ﬂ'Q T \/kg T ,U‘Q o \/p2 T :uz
a E \ : When momenta are moderate, energy mismatch is of the order of the hadron scale At ~ ' = O(1 fm/c)
i et 2 1 2 2 1242 ki +p°
However, if momentum of the projectile a grows, VK2 4 p2 = \/kz +ki+ps =k, + or. T
k2, +p?  KkE2, +p? 21 [p+ K3 . e
the energy defect becomes extremely small : =~ 1-2Lk1: | 2'2'*102: - g—p ~ o [;(1 — li) - ,uz] . 2 (1 ——Las.)p’
r(l —x) 1 ki =xp, k2= (1-2)p
The lifetime of the virtual state is then large and grows with energy as At ~ ( 5 )P > — ( )
H H

The same consideration applies to multi-step processes giving rise to long=-living time-ordered cascades.

Lifetime of a proton fluctuation into n pieces ("partons") with momenta k; = (2; .,k ;), i=1,...n

can be estimated, analogously, as .

n 2 o .
At X — ~ — Xtz . 2 _ 2 2
AE  p? AL i—1 m7; = m; + k1,

Due to Lorentz time-dilation, a relativistic hadron acquires rich internal structure.



simpler: from QFT toQM |

So drawn, the splitting process looks natural. However, QFT does permit "unnatural” ordering of events in the configuration space (t,r)
projectile
't1 X1
' t; < t, < t; to< ty, 13

seems anti-causal ©..

cascading t' vacuwm X2
fluctuation
[ no trouble: Causality of the S-matrix gets
t, restored upon integration over coordinates. ]
I 1 n . ] . ]- ].
Have a look at the lifetime of such an "anti-causal" configuration: At NI

At very high energy vacuum fluctuations become vanishingly rare and can be disregarded.
The physical picture simplifies significantly.  Effectively, QFT scenario reduces to a much simpler QM one!

Another interesting thing happening with dynamics of high energy interactions is that when particles collide along the z axis,

our beloved 4-dimensional world effectively splits into two sub-spaces: X/ = (¢, x,V,27) —> (C _ X (, V)
More than just arithmetics 4 = 2 4+ 7

4

COMPLEXITY OF DYNAMICS GETS HALVED : SOFT physics

curiously, it is the other way around for the HARD physics SIMPLE SERIOUS




EXTRAS



Relativistic hadron has neither definite matter content nor definite geometrical profile in the impact parameter (transverse) plane.

Hadron is a quantum superposition of various components.

Due to the relativistic suppression of vacuum fluctuations with a time disorder the hadronic state can be described in terms of a multiparticle ("light-cone") wave function.
Each component has a certain number of constituents, each of which carries a certain fraction of the longitudinal momentum and has certain transverse position (& | ).
Certain because during infinitesimal interaction time neither longitudinal momenta nor transverse coordinates of the constituents change.

High-energy interaction makes a momentary snapshot of the hadron.

What you see in this "photo" is a frozen configuration of one the virtual states belonging to the wave function of the relativistic hadron projectile.

It is clear that each state, given its specific content and configuration, interacts with the target with its proper intensity - cross section.

So what do we mean then when we refer to, say, pp cross section being 60 mb at ISR energy!? (or about 100 mb at LHC) M. Good and W. Walker, Phys. Rev. D 120 (1960) 1857
e H. Miettinen and J. Pumplin, Phys. Rev. D 18 (1978) 1696

Hadron cross sections that we measure and talk about are average characteristics of strong interactions.

©. @)
An incident proton, or pion, interacts with larger or smaller cross section on event-by-event basis. _
P P g Y doo Py(0) = (0) = Ttot
0

What one has to have in mind is a distribution over cross sections, specific for a given projectile hadron.

| — T

Such distributions can indeed be drawn. We do not know them with certainty. S o

At the same time, some global features can be firmly established. = — pQCD range for P (c~0)

.......

I. dispersion of the distribution is related to forward inelastic diffraction

9 doh gl (02) — (0)°
dt 167

. — - — - —
B

h!+£h

2. small-sigma limit can be estimated by means of pQCD.

Quarks sitting close together form a colourless weakly interacting configuration.
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Hadron matter becomes transparent w.r.t. to such fluctuations.
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Colour Transparencg
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Take a pion. (I promised not to refer to QCD but | could not possibly hide from you that hadrons do contain quarks and gluons)

Its light-cone wave function contains various quark-gluon states |7T> — \ch} + ‘C]ng> + |chgg> + ... Low-Nussinov model

I s " : , , , , of the Pomeron
Gluon component is important: it is "internal” gluons that make hadrons interact with large (not falling with energy) cross section :

2 ;:_;i' )
2 Im fel = &;} o = gE (briefly, this is the picture of how. colour ex.change mediated by g —ii z g
23 1§ t-channel gluon results in formation of multi-hadron final states) } 3

q-et ki1 2

@ Experimental "measurement” of the pion w.f.

q-jet th 1—2 dO_
1 (12 o [Wpgg(2)

dz

Let energetic pion hit a heavy nucleus.

[y

It would normally break up the target

tot 2 2/3
o4 X R o A

Should we want the target nucleus to stay intact (diffraction), textbooks would teach us that the probability of such eventuality decays exponentially with increasing nucleus size :

z tot However we are now aware that the notion of the total pion-nucleon Xsection is dubious (to say the least)
w(z) = exp Y :exp{—JWN ON z}
R 4

- There are different configurations of constituents in the pion, and some may have considerable penetrating power.

mean free path nucleon density in nucleus A quark and an antiquark sitting close have a good chance to be the one: their colour fields cancel!

All configurations that interact strongly get filtered out by the big nucleus. Only penetrating pion survives: squeezed quark pair = small colour dipole.

coh
Its interaction being small, the scattering amplitude becomes coherent : ./\/lff}{} x A, do x A?
Will one see a pion on the backside of the target!
Expected Jcoh 12
doh = / dt ilt X 575 = A*/3 Hardly. Admixture of a small-dipole component in a normal pion is tiny.
[t~ R The most probable outcome - production of two hadron jets emanating from the quark and the antiquark.
Size of the dipole ~ 1/k; . Selection of final state jets with £y > 1.5 GeV
Observed (Fermilab E791) do-gci)f}flr X A1°6 guaranteed that the squeezed pion propagated as a compact dipole all the way through the nucleus.

One of many a bright manifestation of Colour Transparency



