

Non LHC Experiments at CERN with Slovak Participation

RNDr. Ivan Králik, CSc. Ústav experimentálnej fyziky SAV, v.v.i. Košice

Introduction

- 30 years ago the LHC has not yet been built...
- The CERN flagship: Large Electron Positron collider
 - the largest electron-positron collider evet built
 - precise tests of the Standard Model and precise measurement of its many parameters
- Heavy Ion Programme at the Super Proton Sychrotron
 - systematic studies of many aspects of the collisions of heavy atomic nuclei accelerated to very high energies
 - at that time the SPS provided the largest energies for nuclear projectiles (O, S, Pb) in laboratory

Large Electron Positron collider

- 27 km circumference
- The largest electron-positron collider ever built
- Initial energy: 91 GeV
- Max energy: 209 GeV

LEP RF Copper Cavity

- electron and positron acceleration
- copper spheres at the top stored the microwave energy between bunches
 - energy saving

Heavy Ion Acceleration @ CERN

LINAC3 – linear accelerator for Pb ions, 4.2 MeV/u

Super Proton Synchrotron SPS

O: (8p, 8n) S: (16p, 16n) Pb: (82p, 126n)

DELPHI @ LEP

Dramatis personæ

- 1990 East-West Cooperation Project (Austria)
 - collaboration between MMF UK Bratislava + HEPHY Wien
 - P. Povinec, P. Kubinec, I. Mikulec, P. Chochula
 - J. Braciník, P. Rosinský (students)
- 1993
 - B. Sitár, R. Janík
- 1995 Bratislava accepted as a regular member of the DELPHI Collaboration

DELPHI experiment

- 550 physicists
- 56 institutions
- 22 countries

- 1.23 T magnet, 10m diameter
 - at that time the largest supraconducting magnet
- First use of the silicon pixel detectors in a collider experiment

DELPHI physics

- Study of various aspects of the Standard Model
 - measurement of the electroweak interaction parameters
 - decays of Z⁰ boson
 - one of the results was fixing the number of neutrino generation to 3
 - measurement of the fragmentation functions and quantum chromodynamics tests

Bratislava contribution

- T meson polarization
- study of rare events Λ_b^0

$$\rightarrow \Lambda_c^+ \pi^- / a_1^-$$

 Λ_c^*

 a_1^-

$$\rightarrow p K^{-} \pi^{+}, p K_{S}^{0}, \Lambda^{0} \pi^{0}$$

$$\rightarrow \rho^{0} \pi^{-}, \pi^{+} \pi^{-}$$

R&D for DELPHI : semiconductor detectors

VFT (Very Forward Tracker)

- R&D and production of microstrip modules
- assembly and tests of preamplifiers
- climatic tests of silicon detectors in a specialized climatic chamber
 - temperature and humidity effects on semiconductor detectors)
- Study of the Lazarus effect: Si detector damaged by radiation will function when kept at cryogenic temperature

Heavy Ion Saga

SPS Heavy Ion Programme

- 1986: ¹⁶O ions accelerated to **60** a **200** AGeV/c
- 1987: ³²S ions accelerated to **200** AGeV/c
- 1994: ²⁰⁸Pb ions accelerated to **156** AGeV/c
- at the end of the 20. century the energy of Pb ions was lowered to 40 AGeV/c

NA34/3 : HELIOS-3

Dramatis personæ

- First contacts of physicists from IEP SAS Košice with the NA34 (HELIOS) experiment lead by Christian Fabjan
 - 1984 M. Seman
 - 1987 L. Šándor
 - 1989 J. Antoš
- were extended to an offer for the Košice team (J. Antoš, I. Králik, L. Šándor, J. Urbán) to join the NA34/3 (HELIOS-3) experiment.
 - affiliation of all slovak authors was Slovak Academy of Sciences, Košice
- A slovak institution is officially mentioned in the CERN "Grey Book" (*Experiments at CERN*) for the year 1991.

NA34/3 (HELIOS-3) Measurement of Low Mass Muon Pairs in Sulphur-Nucleus Collisions with an Optimized HELIOS Muon Spectrometer

Fig. 1. Overall experimental setup with target region inset

The first experiment mentioned in the CERN "Grey Book" with slovak participation

(without financial and harware contribution)

Optimized for the dimuon measurement in the mass ranges from the threshold up to the mass of J/ψ.

Dilepton emission during all the phases of the expected QGP creation, evolution and freezout \rightarrow Expected insight into the underlying dynamics.

Changes of the vector meson properties in very dense hadronic medium.

UEF: J. Antoš, I. Králik, L. Šándor

UPJŠ: J. Urbán

NA34/3 (HELIOS-3) Dimuon mass continuum

Pb-Pb: experimental challenge

1 Pb-Pb collision at 156 AGeV/c

Experiments that could handle O and S beams could not cope with the huge number of particles produced in Pb-Pb collisions

New generation of heavy ion experiments

WA97 NA57

Dramatis personæ

List of physicists and engineers participating in WA97 and NA57

- J. Bán, ÚEF SAV Košice
- J. Ftáčnik, FMFI UK Bratislava
- T. Jusko, ÚEF SAV Košice
- B. Kocper, ÚEF SAV Košice
- I. Králik, ÚEF SAV Košice
- R. Lietava, FMFI UK Bratislava

ÚEF SAV Košice

- M. Lupták, ÚEF SAV Košice
- B. Pastirčák, ÚEF SAV Košice
- K. Šafařík, ÚEF SAV Košice, CERN
- L. Šándor,
- J. Urbán, UPJŠ Košice
- G. Martinská, UPJŠ Košice
- J. Pišút, FMFI UK Bratislava
- N. Pišútová, FMFI UK Bratislava
- J. Fedorišin, ÚEF SAV Košice

RN driving force behind slovak participation in WA97/NA57 team leader

WA97

Study of Baryon and Antibaryon Spectra in Lead Lead Interactions at 160 GeV/c per Nucleon

Pb-Pb and p-Pb collisions at 158 AGeV/c

Very compact detector optimized for the detection of the weak decays of Λ , Ξ , Ω a K⁰_S at y*=0. It could handle the particle multiplicity from Pb-Pb collisions at 160 AGeV/c

- Very good mass resolution for reconstructed particles.
- Very clean signal with minimum background.

NA57

Study of Strange and Multistrange Particles in Ultrarelativistic Nucleus-Nucleus Collisions

Follow up of the WA97 experiment

- Enlarged range of collision centralities
- Collecting data from Pb-Pb and p-Be collisions at 158 and 40 AGeV/c

Effect of the enhanced production of strange baryons

Baryons with different strange quark content can be identified thanks to their weak decays into final states with only charged particles

WA97 a NA57 Effect of the enanced production of strange particles in Pb-Pb collisions compared to p-Be collisions

NA49

Dramatis personæ

- **1997: Memorandum of Understanding** •
 - J. Braciník
 - J. Ftáčnik
 - V. Hlinka
 - R. Janík
 - M. Ivanov
 - M. Pikna
 - team leader - **B. Sitár**
 - P. Strmeň
 - I. Szarka
 - 1998: V. Černý

team leader 2001 - 2010

Bratislava contribution

- Construction of a new "Gap TPC" covering a gap in the tracking acceptance not covered by the Vertex TPC's and the Main TPC.
 - building GTPC
 - software for GTPC
- Software for the TPC
- Physics analysis

NA49 Physics in Bratislava

- NA49 was a multupurpose experiment for the study of the multiparticle production in pp, p-Nucleus and Nucleus-Nucleus collisions
- Many aspects of the Pb-Pb collisions
- Bratislava:
 - study of the inclusive production of π, p, K, p and n
 - study of the resonance production Δ , N^{*}.
 - etc...

10.2.2000: A new state of matter

L. Maiani, CERN Director: "...We now have evidence of a new state of matter where quarks and gluons are not confined. There is still an entirely new territory to be explored concerning the physical properties of quarkgluon matter..."

Dramatis personæ

Comenius University Bratislava joined in 2011

•	T. Blažek	FMFI UK Bratislava	team leader
•	V. Černý	FMFI UK Bratislava	
•	R. Lietava	FMFI UK Bratislava	
•	M. Kovaľ	FMFI UK Bratislava	
•	P. Maták	FMFI UK Bratislava	
•	F. Herman	FMFI UK Bratislava	
•	L. Bičian	FMFI UK Bratislava	
•	Z. Kučerová	FMFI UK Bratislava	
•	A. Zajac	FMFI UK Bratislava	
•	A. Kleimenova	FMFI UK Bratislava	
•	R. Volpe	FMFI UK Bratislava	
•	Uhliarik	FMFI UK Bratislava	
•	Híveš	FMFI UK Bratislava	
•	D. Novotný	FMFI UK Bratislava	
•	Veľaš	FMFI UK Bratislava	
•	Z. Šinská	FMFI UK Bratislava	
•	V. Zaujec	FMFI UK Bratislava	
•	V. Kraľovič	FMFI UK Bratislava	
•	P. Mészáros	FMFI UK Bratislava	

NA62 Experiment

Data taking

- 2016 Commissioning + Physics run (45 days).
- 2017 Physics run (160 days).
- 2018 Physics run (217 days).
- 2021 Physics run (85 days [10 beam dump]).
- 2022 Physics run (215 days).
- 2023 Physics run ongoing...

Currently ~ 30 institutes, ~ 300 collaborators

K⁺ decays in flight Primary goal: measure

$$\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})$$

Other rare or SM forbidden K+ decays Beam Dump Mode - Exotics searches

- primary beam 400 GeV from the SPS
- secondary beam 75 GeV positive particles
 - 6% K⁺, 24% protons, 70%

π

K+ decay inside the detector

Comenius University contribution

- Local Trigger Unit software (dominant contribution by *V. Černý*)
- Data Acquisition
- Straw spectrometer: experts, efficiency improved, 2025 update
- GTK experts, coordinator (A. Kleimenova, Z. Kučerová)
- Dalitz π0 decay analysis (*PhD. M. Koval*)
- K to πµµ analysis (*PhD. L. Bičian*)
- K+ π+ matching and K+ to π+ vv-bar (*Phd. Z. Kučerová*)
- K to πX analysis (*R. Volpe*)
- Exotics searches (A. Kleimenova)

NA62 Physics

ISOLDE

Dramatis personæ

- FU SAV
- Martin Venhart
- Martin Veselský
- Ján Kliman
- Stanislav Hlaváč
- Vladislav Matoušek
- Andrej Herzáň
- Anton Repko

- Paresh Prajapati
- Andrej Konopka
- Sebastian Vielhauer
- Matúš Sedlák
- Matúš Balogh
- Tatiana Grečnárová
- Magdaléna Šolcová
- Erika Jajčišinová
- Robert Urban
- Jozef Klimo
- Monika Bírová
- Andrej Špaček
- Lukáš Holub
- Jakub Krajňák
- Gulnur Kantay
- Natália Ďzalaiová
- Sára Bánovská
- Jakub Lušnák
- Július Bačkai
- Jakub Lietavec

- FMFIUK
- Stanislav Antalic

Slovak republic became a full member of ISOLDE in 2016

Isotope Separation On-Line DEvice

Small detection systems built outside CERN in national laboratories can be installed in the experimental area.

This schema has been exploited by Slovak labs so far.

Very intensive 1.4 GeV beam from the PS booster is used for production of beams consisting of exotic unstable isotopes.

Magnetic mass separators transport individual isotopes to experiments

IS521 experiment: TApe TRAnsport

- Rapidly quenched material: metallic glass is used to transport radioactive samples (deposition of ISOLDE beam)
- Operated at 3 x 10⁻⁸ mbar
- Windowless LN₂ cooled detector was used
- Very good resolution for conversion electrons

Nuclear structure of odd-mass Au isotopes programme

- Several new deformed configurations observed
- Most important: extremely deformed
 structure in ¹⁷⁷Au
- Resolution of TATRA for both conversion electrons and gamma rays is crucial – new beam time approved at CERN
- This methodology appeared in new text book on nuclear physics

Nuclear Spectroscopy and Nuclear Structure Nuclear Data A primer

David G Jenkins John L Wood

Closing remarks

Closing remarks

- Experience gained at DELPHI and the heavy ion experiments at the SPS was transferred to the ALICE experiment at the CERN LHC
- Smaller experiments with much less energetic beams are equally challenging and may provide cornucopia of information on aspects of objective reality not accesible otherwise.