

Challenges of the final cooling solenoid

C. Accettura, A. Bertarelli, B. Bordini, L. Bottura, A. Dudarev, A. Kolehmainen, M. Mentink, T. Mulder, F. Sanda, A. Verweij, M. Wozniak

22/06/2023, IJCLab (Orsay, France)

- 1. Introduction and requirements
- 2. Which technology?
- 3. Main Challenges
- 4. Conceptual design
- 5. Mechanical considerations
- 6. Roadmap and planning
- 7. Societal impact of HTS UHF magnets
- 8. Conclusions

- Final cooling is part of the cooling system
- The final cooling channel is made of several stages (~14), each stage starts with a focusing solenoid
- Main solenoid specifications:
 - Ultra-High-Field (UHF) solenoid (>40T)
 - Homogeneity ~1% over 0.5m
 - Bore~50mm

Technology	Pro's	Con's
Hybrid SC (LTS) + resistive	Known technology (TRL 9)	Large dimension and mass Electric power consumption

Cross section of 45 T, 32 mm NHFML user facility solenoid Hybrid Magnet 33.5 T from resistive insert, 11.5 T by superconducting outsert 30 MW power comsumption https://nationalmaglab.org/userfacilities/dc-field/magnetsinstruments/

Cross section of 40'/37 T, 32/50 mm CHMFL user facility solenoid Hybrid Magnet 29/26 T from resistive insert, 11 T by superconducting Nb3Sn CICC outsert 20 MW power comsumption http://english.hmfl.cas.cn/uf/ms/202202/t 20220224 301451.html

Technology	Pro's	Con's
Hybrid SC (LTS) + resistive	Known technology (TRL 9)	Large dimension and mass Electric power consumption
Hybrid SC (LTS) + SC (HTS) Insulated	Known design principles Synergy with other fields of science application Can profit from development by others (e.g. NHMFL)	Large dimension and mass Developmental technology (TRL 6/7)

1.2 GHz-NMR (Bruker) 28.19 T – 54 mm RT

Technology	Pro's	Con's
Hybrid SC (LTS) + resistive	Known technology (TRL 9)	Large dimension and mass Electric power consumption
Hybrid SC (LTS) + SC (HTS) Insulated	Known design principles Synergy with other fields of science application Can profit from development by others (e.g. NHMFL)	Large dimension and mass Developmental technology (TRL 6/7)
All-SC (HTS) Insulated	More compact than LTS/HTS Allows for operation at higher temperature	R&D at low readiness (TRL 4/5)
All-SC (HTS) Non-insulated	Most compact magnet winding Synergies with other fields of science/societal applications Can profit from development by others (e.g. NHMFL)	R&D at low readiness (TRL 3/4/5) Ramping time and field stability need to be demonstrated

Sunam NI one-body ReBCO magnet 26.4 T in 35 mm, J central pancake 404 A mm⁻² (26.4 T HTS multi-width) overall diameter and height: 172 and 327 mm S. Yoon et al. Supercond. Sci. Technol. 29 (2016) 04LT04

Technology	Pro's	Con's
reennoiogy	110.0	
Hybrid SC	Known technology (TRL 9)	Large dimension and mass
(LTS) Which te	echnology for the final cooling se	olenoid?
Lar	de coil are expensive	
Hybrid	re components (nested coils)	could complicate
(HTS) COR	e componente (neeted cone)	gy gy
Insula See B. Bord	ini, Technology options for the final cooling so	plenoids, IMCC Annual Meeting
2023		
All-SC		RL
Insulateu	temperature	4/0)
All-SC (HTS) Non-insulated	Most compact magnet winding Synergies with other fields of science/societal applications Can profit from development by others (e.g. NHMFL)	R&D at low readiness (TRL 3/4/5) Ramping time and field stability need to be demonstrated

Sunam NI one-body ReBCO magnet 26.4 T in 35 mm, J central pancake 404 A mm⁻² (26.4 T HTS multi-width) overall diameter and height: 172 and 327 mm S. Yoon et al. Supercond. Sci. Technol. 29 (2016) 04LT04

Technology	Pro's	Con's					
Hybrid SC	Known technology (TRL 9)	Large dimension and mass					
(LTS) Which te	chnology for the final cooling s	olenoid?					
✓ All-	SC (HTS)						
Hybrid Nor	inculated	ass					
(LTS) V INOI	i-insulateu	ду					
(HTS) V High	TS ✓ High uniform J						
✓ Single coil							
All-SC See B. Bord	ini, <u>Technology options for the final cooling s</u>	olenoids, IMCC Annual Meeting					
Insulated	temperature	4/0)					
All-SC (HTS) Non-insulated	Most compact magnet winding Synergies with other fields of science/societal applications Can profit from development by others (e.g. NHMFL)	R&D at low readiness (TRL 3/4/5) Ramping time and field stability need to be demonstrated					

Sunam NI one-body ReBCO magnet 26.4 T in 35 mm, J central pancake 404 A mm⁻² (26.4 T HTS multi-width) overall diameter and height: 172 and 327 mm S. Yoon et al. Supercond. Sci. Technol. 29 (2016) 04LT04

Main challenges-1

REBCO conductor

- High stress management:
 - $P_{M}=B_{0}^{2}/2\mu_{0}\sim 600 MPa$
 - Hoop stress~ 1.4-2.2P_M (compact coil)
- Non-homogeneous and anisotropic material:
- Maximum allowable stress very weak in certain direction

Need of

experimental

campaign!

- Scarce literature
- Reduced safety margin

<Schematic of RE-based HTS tape>

Stabilizer [Cu plating] 20µm Protection laver [Ag] 2µm Superconducting Layer [GdBCO] 2 µm / [EuBCO+BHO] 2.5 µm Buffer layer [MgO, etc.] 0.7µm Substrate [Hastelloy®] 75 / 50 µm

Reference Conductor Fujikura FESC-SH12. https://www.fujikura.co.jp/eng/products/newbusi ness/superconductors/01/superconductor.pdf

Hideaki Maeda and Yoshinori Yanagisawa IEEE TAS, VOL. 24, NO. 3, JUNE 2014.

nental aign!	REBCO conductor		c/Ic _o versus tensile strain	
aigi i.	Axial tensile stress	700MPa	1.0	
	Axial tensile strain	0.4%	0.8	
	Transverse compressive stress	>100MPa	$\begin{array}{c c} \bullet & Ic_1/Ic_0 - 75\mu\text{mt substrate} \\ \hline c_2/Ic_0 - 75\mu\text{mt substrate} \\ \hline c_2/Ic_0 - 75\mu\text{mt substrate} \\ \hline c_2/Ic_0 - 75\mu\text{mt substrate} \\ \hline \end{array}$	
	Transverse tensile stress	10-100MPa	$\begin{array}{c c} 0.2 \\ \hline 0.2 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.10 \\ $	
	Max shear stress	>19MPa	0.00 0.10 0.20 0.30 0.40 0.50 0.6 Tensile Strain [%]	
il cool	al cooling solenoid, IMCC Annual Meeting - 22/06/2023			

Main challenges-2

- Mechanics and Material Science
 - Detailed analysis of fast transients in Not/Metal Insulated coils are essential for their protection (and operation)
 - CERN started to work on it
 - Several experts on quench dynamics and SC magnets protection
 - In house software (STEAM) validated on numerous LTS magnet tests/experiments
 - Development of new tools dedicated to the transient analysis on ReBCO not/metal insulated coils
 - Availability of and competences on FEM software (Comsol Multiphysics and GetDP) running on CERN clusters

Simulation and Animation courtesy of Tim Mulder

Conceptual design

- High Je (> 650 A mm⁻², to limit costs and dimensions)
- Non/metal-insulated coils (protection, mechanical robustness)
- Modular single layer pancakes (design simple and flexible)
- Use as wide as possible tapes (12 mm, to limit the number of pancakes
- Current/tape~760A<1000 A < estimated Ic (4.2 K, B// =50 T)
- Radially support each coil via an outer ring that could eventually apply a precompression on the coil (limit the hoop stress and to avoid tensile radial stresses)

See B. Bordini, <u>Conceptual Design Study of a 40+ T ReBCO</u> <u>Solenoid for the MUON Collider</u>, IMCC Annual Meeting 2022

- A high radial compression is necessary to reduce hoop stresses and prevent tensile radial stresses on the HTS coil (~200MPa)
- Mechanical concept is based on encapsulating HTS pancake coils in an external structure, generating high radial compressive stresses. Three concepts analysed:
 - 1. Thermally-induced shrink fitting
 - 2. Adjustable shrink-discs with conical surfaces
 - 3. Hybrid solution (1+2)

Mechanical considerations - First concept

Copper OFE SS-304L (Inox)

- FEA of single pancake. The baseline concept is based on encapsulating HTS pancake coils in a thick cylindrical shell, relying on thermally-induced shrink fitting.
- Linear Elastic Materials; orthotropic, homogenized HTS properties, properties function of temperature
- Two options studied
 - 20 µm of Cu (750 turns)
 - 40 µm of Cu (600 turns)

<Schematic of RE-based HTS tape>
Stabilizer [Cu plating] 20µm
Protection layer [Ag] 2µm
Superconducting Layer [GdBCO] 2 µm / [EuBCO+BHO] 2.5 µm
Substrate [Hastelloy®] 75 / 50 µm

- Thermal condition
 - \DeltaTshell = 200 °C
- Electromagnetic Forces
 - Ideal Solenoid ($J_{ideal} = \frac{B_{MAX}}{\mu_0(r_{co} r_{ci})} = 531 \text{ A/mm2}$)
 - Real Solenoid ($J_{real} = J_{ideal} \frac{t_{coil} + t_{support plate}}{t_{coil}} = 620 \text{ A/mm2}$)

Mechanical considerations - First concept

- A pre-compression of ~200MPa is achievable with thermally-induced shrink fitting (Δ Tshell = 200 °C)
 - Stress/strain below the limits, but tight safety factor \rightarrow important to verify the material limits
 - The Cu fraction in the tape does not significantly impact the peak stresses (simulations accounting for Cu yielding on going)
 - The max hoop strain strongly depends on the thickness of the plates between the modular coils

				Stress	(MPa)	Stress (I	MPa) at 4.2 ⊮	Stres	s (MPa) and S	Strain (%)
Case	Copper in the tape (%)	Distance between 'modular' coils (mm)	J _e (A/mm²)	Min Hoop	Min Radial	Min Hoop	Min Radial	Max Hoop Stress	Min Radial Stress	Max Hoop Strain
1	40	2	622	-473	-207	-385	-190	547	-343	0.33
2	20	۷ ک	632	-484	-211	-413	-193	529	-352	0.3
3	40	0	0 542	-473	-207	-385	-190	412	-320	0.25
4	20	U		-484	-211	-413	-193	393	-330	0.22

Mechanical considerations - Second concept

 Alternative concept is based on a pair of adjustable shrink-discs with conical surfaces

Thicker coils packs can be assembled (up to 8 x 12 mm coils)

Mechanical considerations - Second concept

- 2 Load Steps:
 - Shrink Disk displacement (5 mm)
 - Energization
- Max. Hoop Stress (after energization): 620.4 MPa
- Max. Hoop Strain (after energization): 0.344 %
- Shear Stresses globally lower than 15 MPa
- However, locally they can reach after energization ~ |30| MPa

Mechanical considerations - Third concept

- To limit shear stresses, an intermediate steel shell is added (ID 184 mm; OD 224 mm)
- ~ 150 µm interference with coil pack created by differential heating
- 3 Load Steps: 1. Shell/Coil Interference; 2. Shrink Disk Displacement (2.2 mm); 3. Energization
- Min. Hoop Stress after shrinking: -426 MPa
- Max. Hoop Stress after energization: 598 MPa
- Max. Hoop Strain after energization: 0.332
 %
- Local peak shear stress ~ 10 MPa
- Max Shear after energization |9.2| MPa

Mechanical considerations - Third concept

- To limit shear stresses, an intermediate steel shell is added (ID 184 mm; OD 224 mm)
- ~ 150 µm interference with coil pack created by differential heating
- 3 Load Steps: 1. Shell/Coil Interference; 2. Shrink Disk Displacement (2.2 mm); 3. Energization
- Min. Hoop Stress after shrinking: -426 MPa
- Max. Hoop Stress after energization: 598 MPa
- Max. Hoop Strain after energization: 0.332
 %
- Local peak shear stress ~ 10 MPa
- Max Shear after energization |9.2| MPa

			11000
teel 10)			2020 R2
ed	URIS (N07716)		
	REBCO conductor		
	Axial tensile stress	700MPa	
	Axial tensile strain	0.4%	
	Transverse compressive stress	>100MPa	
	Transverse tensile stress	10-100MPa	
	Max shear stress	>19MPa	

Preliminary is ok, but limited safety margins ->
 Fundamental to have a good understanding of the material limits and failure mode

Roadmap and planning

- How to tackle these challenges?
 - The proposed design is pushing at the limit the HTS performance → Fundamental to characterize the HTS tape (also for more detailed simulations)
 - Evaluate the **impact of the manufacturing process** on the **coil final performance**
- What can we test?
 - Tape stacks
 - Small-size coil
 - Full-size coil
 - Pancakes stacked in mini-coils

Roadmap and planning

Courtesy of A. Dudarev

Courtesy of F. Sanda

	Configuration	Objective	Test description	<u>.</u>
Material Characterization & Fabrication	Tape stacks	Characterize the thermo-physical and mechanical properties of the tape.	IET, dilatometer.	
	Sub-size Full-size	Characterize the mechanical behavior of coil during pre- compression.	Compressive jig with controlled compressive force with DIC and strain gauges.	Courtesy of F. Sanda
	Dummy	Tape degradation during coil manufacturing.	Test Ic before/a winding at 77 which type??	

+ test of inter-turn resistance, joint design, protection and performance

Societal impact of HTS UHF magnets

Societal impact of HTS UHF magnets

Generator for wind turbine

Conclusions

- A conceptual design of the final cooling solenoid has been studied:
 - 40 T
 - All-SC (HTS)
 - Non-insulated
 - High uniform J
 - Single coil
- The main challenges are related to the mechanics and the material limits: 3 concepts have been proposed to apply the required pre-compression to the coil and to limit the stresses.
- The analysis shows that we are operating at the limit of the HTS performance → fundamental to verify the material behaviour and the failure modes.
- If successful, it can have a great impact on science and societal applications!

MInternational UON Collider Collaboration

Thank you for your attention! Your questions please?

40+ T Conceptual design

46 identical **'modular'** and **6 'correction'** pancakes

- **'modular'** pancake:
 - 6 cm (6-8) thick coil
 - J_e632 A mm⁻² (>500)
 - 12 mm wide tape
 - Outer ring thickness x times 0.1
 (>1) coil thickness 0
 - Inner ring 5 mm thick
 - Support Plate 2 mm (less?) thick
 - Bore aperture 50 mm
 - Bore Field = 40 T

Technology options for the final cooling solenoids- B. Bordini

Principles Guiding the study 1/2

Correction' Coil Inner Ring solenoid 0.35 Outer Ring 0.3 of the 0.25 Bore 74 0.2 Modular' Figure rapresenting Field Homogeneity 0.15 Coil 0.1 Support Plate 0.05 % -0.05 01 0.15 0.2 0.25

- limit costs and dimensions
- Modular Single coil pancakes (not nested coils)
 - simplify the design, the magnet system and the protection
- Non/metal insulated coils
 - protection, mechanical robustness, high J_e
- Avoid tensile radial stresses and limit the hoop strain to values lower than 0.4 %
 - minimize the risk of I_c degradation
- Radially support each pancake via a stiff outer ring that also applies a radial precompression on the coils

Iimit the hoop strain and avoid tensile radial stresses
2nd IMCC Annual Meeting, IJCLab - 22.06.2023
Technology options for the final cooling solenoids— B. Bordini-

Principles Guiding the study 2/2

- minimize axial Lorentz forces and maximize I_c
- Intercept axial Lorentz forces between pancakes via support plates
 - minimize the pancakes mechanical interactions, avoid the accumulation of axial forces
- Use as wide as possible tapes, 12 mm
 - to limit the number of pancakes

- Robust design for the 'correction' coils, to account for the not negligible axial forces experience (significant radial fields) and the conductor magnetization (tape striations ?)
 - protection, mechanical robustness

- Step 1: Analytical estimation
- Analytical calculations of stresses and deformations performed for an inner cylinder submitted to EM forces and radial preload from an external thick cylindrical shell, linearly superposing effects of preload, EM forces (and restoration of Boundary Conditions)
- Assumptions
 - Axial symmetry, plain strain (i.e. infinitely long solenoid)
 - Linear elasticity. Homogeneous material. Both isotropic and orthotropic cases studied.
 - Ideal, uniform current distribution
- Main parameters and material properties:
 - Magnetic Field $B_{max} = 40 \text{ T}$
 - Coil Dimensions : Inner Radius $a_c = 30 \text{ mm}$ Outer Radius $b_c = 90 \text{ mm}$
 - Current density $J = \frac{B_{max}}{\mu_0(b_c a_c)} = 531 \text{ A mm}^{-2}$
 - Shell Properties $a_s = 90 \text{ mm}$, $b_s = 250 \text{ mm}$, $E_s = 210 \text{ GPa}$ (Steel Outer Shell)
 - HTS Tape Geometry: width 12 mm; thickness $t_w = 75 \ \mu m$
 - Wire Elastic properties from rule of mixtures with 50 µm Hastelloy, 10+10 µm Copper plating, 5 µm Silver

$$\Rightarrow E_r = 171 \text{ GPa}, E_{\theta} = 180 \text{ GPa}, \text{R} = \frac{E_{\theta}}{E_r} = 1.054$$

Interference (thermally induced) between Coil and Shell $\delta_r = \sim 180 \ \mu m$

- Radial effects
 - Shrink Fitting Pressure (at cold) $p_{\delta} = 170 \text{ MPa}$
 - Coil Radial stresses are always compressive, both for shri energization
 - Min coil radial stress at energization $\sigma_{Trc} = -284$ MPa OD. Final pressure $p_T = 278$ MPa

- Step 1: Analytical estimation
- Analytical calculations of stresses and deformations performed for an inner cylinder submitted to EM forces and radial preload from an external thick cylindrical shell, linearly superposing effects of preload, EM forces (and restoration of Boundary Conditions)
- Assumptions
 - Axial symmetry, plain strain (i.e. infinitely long solenoid)
 - Linear elasticity. Homogeneous material. Both isotropic and orthotropic cases studied.
 - Ideal, uniform current distribution
- Main parameters and material properties:
 - Magnetic Field $B_{max} = 40 \text{ T}$
 - Coil Dimensions : Inner Radius $a_c = 30 \text{ mm}$ Outer Radius $b_c = 90 \text{ mm}$
 - Current density $J = \frac{B_{max}}{\mu_0(b_c a_c)} = 531 \text{ A mm}^{-2}$
 - Shell Properties $a_s = 90 \text{ mm}$, $b_s = 250 \text{ mm}$, $E_s = 210 \text{ GPa}$ (Steel Outer Shell)
 - HTS Tape Geometry: width 12 mm; thickness $t_w = 75 \ \mu m$
 - Wire Elastic properties from rule of mixtures with 50 µm Hastelloy, 10+10 µm Copper plating, 5 µm Silver

$$\Rightarrow E_r = 171 \text{ GPa}, E_{\theta} = 180 \text{ GPa}, \text{R} = \frac{E_{\theta}}{E_r} = 1.054$$

• Interference (thermally induced) between Coil and Shell $\delta_r = \sim 180 \ \mu m$

- Hoop Stresses
 - Min coil hoop stress (ID) after shrink fitting (at cold) $\sigma_{P\theta c}(a_c) = -37$
 - Max shell hoop stress (ID) after shrink fitting (at cold) $\sigma_{P\theta s}(a_s) = 22$
 - Max coil hoop stress (ID) at energization (total) $\sigma_{T\theta c}(a_c) = 548 \text{ MPa}$
 - Max shell hoop stress (ID) at energization (total) $\sigma_{T\theta a}(a_s) = 360 \text{ MPa}$

- A precompression of about 200 MPa is essential to limit the conductor hoop stress to acceptable values
- Even with a 200 MPa precompression, the coil thickness must be smaller than ~8 cm to avoid radial tensile stress
- The maximum field achievable with this design (based on pancakes made of a single coil) is about 40 T
- Most of the axial Lorentz forces act on the last 2 pancakes of each extremity about 3 and 1.5 MN I on average ~30 and 15 MPa applied on the respective support plates the axial force acting on the 4th coil is more than one order of magnitude lower

Mechanical Analysis I * main findings

- A **precompression** of about **200 MPa** is **essential** to limit the conductor hoop stress to acceptable values
- Even with a 200 MPa precompression, the coil thickness must be smaller than ~8 cm to avoid radial tensile stress
- The maximum field achievable with this design (based on pancakes made of a single coil) is about 40^E
 T
- Most of the axial Lorentz forces act on the last 2 pancakes of each extremity
 - about 3 and 1.5 MN → on average ~30 and 15 MPa applied on the respective support plates
 - the axial force acting on the 4th coil is more than one order of magnitude lower

2nd IMCC Annual Meeting, IJCLab - 22.06.2023

Technology options for the final cooling solenoids- B. Bordini

International UON Collider

ollaboration

Mechanical considerations - First concept

• Cas2 **3** : **80**-µm-thick tape (20 µm Cu), 720 turns, **2**-mm distance between adjacent pancakes, J_e = 632 A/mm²

 Case 4 : 80-μm-thick tape (20 μm Cu), 720 turns, no distance between adjacent pancakes, J_e= 542 A/mm²
 C. Accettura et al., Unailenges of Tinal cooling solenoid, INICC Annual Meeting - 22/06/2023

UON Collider Collaboration

Main Dimensions

- Coil ID 60 mm
- Coil OD 180 mm
- Disc OD 500 mm
- Coil Pack Height 112 mm

A. Bertarelli - Mechanical Concepts for Final Cooling Solenoid

Concept 2 – Conical shrink disk: Hoop Stresses and Strains

Load Steps: Non Collider Collaboration Shrink Disk displacement (5 mm)

- 2. Energization
- Max. Hoop Stress (after energization): 620.4 MPa
- Max. Hoop Strain (after energization): 0.344 %

15.00

45.00

To limit shear stresses, an intermediate steel shell is added (ID 184 mm; OD 224 mm) NUN Collider Collaboration 0 µm interference with coil pack created by differential heating

• 3 Load Steps: 1. Shell/Coil Interference; 2. Shrink Disk Displacement (2.2 mm); 3. Energization

45.00

• Min. Hoop Stress after shrinking: -426 MPa UON Collider collaborational. Hoop Stress after energization: 598 MPa

• Max. Hoop Strain after energization: 0.332 %

			Δ
Bit Long Solenoid w/Midplane Spacer and Shell - 8x12 mm Plast. Hoop Stress (Coil) Type: Normal Stress (Zakis) Unit: MPa Global Coordinate System Time: 3 Deformation Scale Factor: 1.0 (True Scale) 08/06/2023 1352 598.12 Max 520.08 44.03 363.93			
283,34 2019 123,85 51,845 -26,24 - 104,29 Min			
	0.00	30.00	60.00 (mm)

R: Long Solenoid w/Midplane Spacer and Shell - 8x12 mm Plast.

Hoop Strain (Coil) Type: Normal Elastic Strain(Z Axis) Unit: mm/mm Global Coordinate System Time: 3

08/06/2023 13:56

0.0015148 0.0011531 0.00079144 0.00042978 6.8115e-5 Min

0.0033231 Max 0.0029614 0.0025998 0.0022381 0.0018764

Deformation Scale Factor: 1.0 (True Scale)

15.00

Local peak shear stress ~ 10 MPa Minternational UON Collider Collabora Max Shear after energization |9.2| MPa

R: Long Solenoid w/Midplane Spacer and Shell - 8x12 mm Plast. Shear Stress(Coil) Type: Shear Stress(XY Component) Unit: MPa Global Coordinate System Time: 3 Deformation Scale Factor: 1.0 (True Scale) 08/06/2023 14:01 - 8.6443 Max 6.6631 4.6818 2.7006 0.71939 -1.2618 -3.2431 -5.2243 -7.2055 -9.1868 Min

Mechanical considerations - Comparison

Concept	Pros	Cons
Thermally-induced shrink fitting	SimpleLimit shear stress	 Requires tight tolerances (~ 2 MPa/µm) Cannot be adjusted Several coaxial shells necessary to limit Tmax on Coil (if overheating is applied)
Adjustable shrink-discs with conical surfaces	 Easily adjustable Tolerances less critical Thicker coil packs can be assembled (up to 8 x 12 mm coils) 	 High shear stresses locally induced Requires control of friction coefficient between conical surfaces ⇒ if lubrication not admissible, hard coatings likely required
Intermediate shell for thermally- induced shrink fitting+Adjustable shrink-discs with conical surfaces	 As concept 2 with limited shear stresses 	Somehow similar to concept one, though lower temperatures and less tight tolerances are required (thanks to adjustment

N: OnlyCuPlastic_Hastelloy+SoftCu INSIDE_HardCu+Hastelloy OUTSIDE_Orthotropic_1sup

N: OnlyCuPlastic_Hastelloy+SoftCu INSIDE_HardCu+Hastelloy OUTSIDE_Orthotropic_1

70.116 42.934 15.753 CER -11.429 -38.611 -65.793

Q: OnlyCuPlastic_SoftCu INSIDE_HardCu+Hastelloy OUTSIDE_Orthotropic_1supportfi

X Axis - Normal Stress - Coil - 1, s Type: Normal Stress(X Axis) Unit: MPa Global Coordinate System Time: 1 Max: 163.05 Min: -197.13 Deformation Scale Factor: 43 (5x Auto) 09/06/2023 12:04

Coil material (Hastelloy+Copper)

Copper hard

Copper soft

Hastellov

Shell

Type: Normal Stress(X Axis) Unit: MPa Global Coordinate System Time: 2 Max: 103.65 Min: -409.42 Deformation Scale Factor: 58 (5x Auto) 09/06/2023 12:08

R: OnlyCuPlastic_Hastelloy+SoftCu INSIDE_HardCu+Hastelloy_Frictionless OUTSIDE_Orthotropic_1supportfrictionless_FRICTIO

R: OnlyCuPlastic Hastellov+SoftCu INSIDE HardCu+Hastellov Frictionless OUTSIDE Orthotropic 1supportfrictionless FRICTIONLES! X Axis - Normal Stress - Coil - 2. s

Type: Normal Stress(X Axis) Unit: MPa Global Coordinate System Time: 2 Max: 60.097 Min: -409.55 Deformation Scale Factor: 58 (5x Auto) 09/06/2023 12:21

60.097

34.167 8.2378

-43.621

-69.551

-95.48

Shell

Roadmap and planning

c	Configuration	Objective	Test description
Inter-turn resistance		Inter-turn resistance control and variants.	Produce baseline windings (e.g. soldered, no insulation control) and variants introducing intrinsic and extrinsic resistance control.
Joint design		Joints resistance and stability.	Produce test configuration for pancake joints and unit electrical/mechanical test. Integrate joints in pancakes and test resistance and stability (force and thermal cycles).
ProtectionSub-size Full-size DummyPerformance	Quench detection.	Introduce and test diagnostics in above tests. Select baseline (voltage ?) for comparison.	
	Dummy	Quench protection.	Test energy release and temperature increase in provoked and spontaneous quenches.
	Coil dynamic force.	Test mini-coil stacks of pancakes.	
		Reaching field/sub- optimal performance.	Use pancakes to test performance (force and thermal cycles) and compare to expected performance from characterized tapes (NOTE: need of complete Ic(B,T,angle) scaling).

Scheduling

A preliminary Gantt chart has been defined

Author: Siara Fabbri			Today:			15/6/2023		2023				2024				2025					2026			
								Jan	Apr	Jul	Oct	Jan	Apr	Jul	Oct	Jan	Apr	Jul	Oct	Jan	Apr	Jul	Oct	
_								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
TASK	OBJECTIVES (can be in Parallel)	COLLABORATORS	PROG	RESS	MONTHS	START	END			s	s		м		т								т	
2.2 – Design and demonstrate UHF HTS solenoids using NI/PI technique for final cooling		Institutes: INFN, CERN, PSI, CEA, LNSMI, Utwente, Us Persons: A. Dudarev, B. Bordini, T. Mulder, A. Bertar Tang	outhampton, SO' elli, C. Accettura,	TON , M. Stater	ra, S. Fabbri, L	Bottura, Y.																		
1	Define performance specifications (beam physics), and initiate meetings with beam/shield/aborte/crycy/vacum/ on these specs (First draft - 2023, final draft - 2025)	S. Fabbri, L. Bottura, M. Statera	0%	9.0	1-Jan-23	30-Sep-23																		
2	Define reference geometries and estimate material needs for technology R&D	M. Statera, L. Bottura	0%	4.0	1-Jan-23	30-Apr-23																		
3	CERN - Engineering design of final cooling solenoid, 40 T (or higher), 50 mm bore, 500 mm length, stand- alone (First concept 2023, Final Concept 2025)	A. Dudarev, B. Bordini, T. Mulder, A. Bertarelli, C. Accettura	0%	9.0	1-Jan-23	30-Sep-23																		
	CERN - R&D pancakes manufacturing and test at CERN, geometry and loading alternatives, resistance control, mechanical testing, powering test	A. Dudarev, B. Bordini, T. Mulder, A. Bertarelli, C. Accettura		36.0																				
	Design and tooling		0%	12.0	1-Jan-23	31-Dec-23																		
4	Mechanical tests		0%	18.0	1-Jan-24	31-Dec-24																		
	Manufacturing start		0%	18.0	1-Jun-24	1-Jun-25																		
	Testing		0%	24.0	1-Jan-25	31-Dec-26																		
5	INFN - R&D pancakes manufacturing and test at INFN, small coils having different configurations and characteristics (insulated, non-insulated, dimensions,). Proposal: Provide test windings for characterization and test at collaborators	M. Statera, S. Sorti		36.0																				
	Start construction		0%	12.0	1-Jul-23	1-Jul-24																		
	Start testing		0%	24.0	1-Jan-24	31-Dec-25																		
6	(SO'TON) – R&D pancakes manufacturing with insulation/potting technology as tested in EuCARD2 (timeline TBD)	Y. Tang																						
7	Testing of small R&D pancakes in background field (10 T, 100 mm maximum) at variable temperature in gaseous helium, for currents up to 1500 A - first tests mid 2024	Y. Tang	0%	12.0	1-Jun-23	30-Jun-24																		
8	PROPOSAL: PSI - R&D pancakes manufacturing and test at PSI. Share advances and make available small windings for characterization and test at collaborators	J. Kosse (PSI), B. Auchmann (PSI)																						
9	PROPOSAL: CEA/LNCMI – Testing of small R&D pancakes in background field (20 T, 120 mm maximum)	X. Chaud (LNCMI), L. Quettier (CEA)																	-	-	age -	et-	and	
																-	-		-		1.200	-	-	

2nd IMCC Annual Meeting, IJCLab - 22.06.2023

Technology options for the final cooling solenoids- B. Bordini

-1-