

Steady HTS magnets The example of the PNRR-IRIS dipole

L. Balconi, L. Rossi, S. Sorti, M. Statera Università di Milano & INFN – sezione di Milano Laboratorio LASA

20 June 2023

OUTLINE

- IRIS Project
- Magnet layout and parameters
- Insulated & Non-Insulated coils
- Concepts and Approaches for Quench Protections

IRIS Structure

WP4 – Superconducting Magnets Laboratory

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9 0.8

0.7

0.6 0.5

0.4

0.3

0.2

0.1

0

WP8 - Green Superconducting Line

Line characteristics	
Power transport	1 GW
Voltage	25 kV
Current	40 kA
Operating temperature	20 K
Line length	130 m
Expected losses	2.5 W/m at 20 K
Overall cable diamater	105 mm

m

MAGNET LAYOUT AND PARAMETERS

Central field B ₀	tesla	10
Minimum central field B _{0min}	tesla	8
Free bore and aperture (both sides) at 300 K, minimum.	mm	H80 x V50
Good field region uniformity	DB/B	1.5%
Good field region extension	mm	H50xV30xL400
Operating temperature	К	20
Minimum op. temper. for test	К	10
Range of field for uniformity	tesla	2-10
Reference ramping rate 0-10T and 10-0 T	A/s	0.1
Maximum feeding current-voltage	A-V	2,000-5
Maximum voltage to ground in any condition	kV	1.5
Maximum temperature difference inside coils following a quench	K	100
Maximum coil temperature following a quench	K	250

Additional plausible features:

- physical length <= 1 m
- cryocoolers at the two ends
- Iron insert for field enhancement

Simplified schematics:

HTS CONDUCTOR

• The HTS conductor will be a 12 mm REBCO tape, matching the following requirements:

Parameter	Specification
Width	12 mm
	(optional 4 mm, up to 4 km total length)
Substrate	Non-magnetic stainless
material	steel or equivalent high
	resistance alloy
Substrate	40 μm
thickness	
Copper RRR	
Total copper	20 (2x10) μm
thickness	
Coated	
conductor	
thickness	

Parameter	Specification	Target
Minimum critical	500	> 600 A
current (20 K, 15 T)		
over an entire Unit		
Length (UL)		
Benchmark current		>2400 A
(4.2 K, 5 T)		
Benchmark current		> 1500 A
(4.2 K, 10 T)		
Minimum length of a	> 200 m	> 500 m
Unit Length (UL)		
Minimum bending	15 mm	10 mm
radius (easy axis)		
Allowable non-Cu	800 MPa	1000 MPa
σ _{longitudinal non-Cu} (4.2 K)		
Allowable		200 MPa
compressive		
σ _{transverse} (4.2 K)		
Allowable tensile		25 MPa
σ _{transverse} (4.2 K)		
Allowable shear		20 MPa
τ _{transverse} (4.2 K)		
Range of allowable		-0.4+0.3%
Elongitudinal		

MAGNET LAYOUT AND PARAMETERS

- Different magnet layouts are investigated, among all: extra-midplane coils and cloverleaf.
- Conclusion is that flat racetracks are a good trade-off between magnetic efficiency and manufacturability.

PNRR_IRIS - WP9, Magnet AuCol annual meeting 2023

THE INSULATION TECHNOLOGY

Insulation

- Control over current and field, and forces
- Repeatable magnet properties
- Demanding protection system
- Lower overall current density

Non-Insulation

- Easier to protect
- Easy to wind
- High overall current density

High screening currents →high forces at quench

 Variability of properties in time

Controlled-Insulation

 Possible to tune PROS/CONS of other solutions on the specific needs

- High effort for research, test, manufacturing
- Need to account for worst scenarios from both cases

PRELIMINARY DESIGN - INSULATED COIL

- This is intended to be the starting point to evaluate different options.
- In order to match the 10 T requirements, a maximum of 30 mm bore-frame and 1 kA are required.
- Other parameters are:

Number coils		8
Cable layout		2 X HTS
Add. Cu in cable	μm	100
Ins. between cables	μm	25
Space between coils	mm	4
L straight part	mm	550
Cable consumption	km	14
Iron insert material		ARMCO

PNRR_IRIS - WP9, Magnet MuCol annual meeting 2023

m

10

5

0

0

PRELIMINARY DESIGN - INSULATED COIL

- In the design, the tape should have a local lowest Ic around 700 A (as 500 A is for 15 T worst-angle).
- The target margins are >20% on the load-line and a 10 K temperature margin.

60

[bct] 02

Fraction 05

20 D2

10

хγ

PRELIMINARY DESIGN - INSULATED COIL

- Stray field < 0.5 mT @ 7 m
- Protection remains challenging. Most critical aspect is discharge due to the large inductance of the magnet (~ 6H)
- Homogeneity is still under investigation and will be improved by shaping the iron insert.
 1st attempt at pole shaping:

Iomogeneity with Def

PNRR_IRIS - WP9, Magnet MuCol annual meeting 2023

QUENCH PROTECTION, ADDITIONS

- Due to the difficulties in protecting HTS magnets by voltage detection, different techniques are studied world-wide, as:
- 1. Optical fibres (temperature);
- 2. LTS co-wind (temperature);
- 3. Distributed sensors network (temperature, field, strain).

PCB copying winding shape, compensation of inductive voltage for QDS based on coil-wide taps

Voltage taps every n-turns, for a finer voltage detection, here with a plate to guide exiting wires

Optical fibres (Ø200 µm) for local temperature measurements, supported by a non-continuous Al plate for thermal contact

And/or: S.C. strand (MgB₂ main candidate) to sense T threshold by quenching it

NON-INSULATED COILS FOR IRIS ESMA

- Designed with conservative approach (margins with B_{\perp}) suitable for MI and further improvable for pure NI.
- Charging time for pure NI is 24 h; overshoots possible but limited by heating.

ШШ

10

0

50

imes^{10 ⁴}

t [s]

imes^{10 ⁴}

t [s]

STEP ZERO DESIGN, VARIANTS, CI

- We are further investigating Metal-Insulation, both with 1-tape and 2-tape cases + 30 μm steel.
- Proper load-cycle may work, if we get slightly faster, we can ignore charging-uncertainty issue.

500

400

300

200

100

0

0

2000

4000

-100

Current [A]

Thank you for the attention!

PNRR_IRIS - WP9, Magnet MuCol annual meeting 2023