# Target and capture solenoids

L. Bottura, C. Accentura, A. Kolehmainen, (CERN) J. Lorenzo Gomez, <u>A. Portone</u>, P. Testoni (F4E) IMCC Annual Meeting, Orsay 19-22 June

# Muon Collider magnet "specs"

Target solenoids Field: 20 T... 2T Bore: 1200 mm Length: 18 m Radiation heat: ≈ 4.1 kW Radiation dose: 80 MGy Accelerator magnets6D Cooling solenoidsField:  $\pm 1.8 T (NC)$ , < 10 T (SC)</td>Field:  $4 T \dots 19 T$ Rate: 400 Hz (NC), SS (SC)Bore: 90 mm ... 600 mmBore: 100 mm(H) x 30 mm(V)Length: 500 mm (x 17)Length: 3 m ... 5 m (x 1500)Radiation heat: TBDRadiation heat:  $\approx 3 W/m$ Radiation dose: TBDRadiation dose: TBD



Field: > 40 T (ideally 60 T) Bore: 50 mm Length:  $\approx$  1 km (x 2) Radiation heat: TBD Radiation dose: TBD Collider ring magnets Field: 16 T peak (IR 20 T) Bore: 150 mm Length: 10 m ... 15 m (x 700) Radiation heat load:  $\approx$  5 W/m Radiation dose:  $\approx$  20...40 MGy



#### **Target and Capture: Magnet specifications**





# SUMMARY

#### • Aim

Develop an alternative solution to the hybrid US-MAP [1-3] (5 resistive coils and 19 SC coils, 2.4 m bore  $\emptyset$ ) made of HTS (23 SC coils, 1.2 m bore  $\emptyset$ )

#### • Design highlights

- VIPER-like cable (HTS tapes, central cooling hole, steel jacket) with I<sub>max</sub>≈61 kA
- Set of 23 coils in 3 sections (300 mm gap between sections, 20 mm gap between coils)
  - Peak field on conductor 20.9 T, magnetic energy 1.1 GJ
  - Cable length  $\approx 8.7$  km, winding mass  $\approx 115$  t
- Field on axis within 4% accuracy of Sayed-Berg formula over 16 m channel length
- Stresses in structural elements within 316 LN limits ( $\sigma_{\gamma} \approx 1000$  MPa)
- Stresses in tapes being investigated to be minimized ( $t_{xv} \approx 30$  MPa)
- Coils operating at 20 K,  $\approx$ 20 bar,  $\approx$ 15 W pumping power,  $\approx$ 150 W heat removal
- High conductor stability (DT≥10 K!)
- Detection & dump for quenches in low field/current most challenging ( $\rightarrow$ long detection times) but seems compatible with hot-spot temperature limit ( $T_{HS} \approx 150-200 \text{ K}$ )

#### **HTS-Based Target Solenoids: HTS Conductor**





#### **HTS-Based Target Solenoids: Field Profile and Coils Geometry**



#### **HTS-Based Target Solenoids: Coils Current and Field**



#### **HTS-Based Target Solenoids: Axial Forces**



#### **HTS-Based Target Solenoids: Jacket Stresses**

 $\cap$ С С  $\cap$  $\bigcirc$  $\cap$  ANSYS Release 19 Build 19.2 NODAL SOLUTION STEP=1 SUB =7TIME=1 SZ(AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX = .003776SMN = .147E + 09SMX = .555E + 09.147E+09 .192E+09 .238E+09 .283E+09 .328E+09 .373E+09 .419E+09 .464E+09 .509E+09 .555E+09



ANSYS Release 19.2 Build 19.2 NODAL SOLUTION STEP=1 SUB =7TIME=1 SY (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX = .003776SMN =-.364E+09 SMX = .365E + 08-.364E+09 -.320E+09 -.275E+09 -.231E+09 -.186E+09 -.142E+09 -.970E+08 -.525E+08 -.799E+07 .365E+08

### **HTS-Based Target Solenoids: Tapes Stresses**

- 1. Stress components of interest in the HTS tapes (de-bonding, degradation):
  - Tensile stress across HTS tapes.
  - Shear stress in HTS tapes.
- 2. The tapes are modelled as relatively stiff components (~100 GPa) due to the large amount of Hastelloy and copper.
- 3. The surrounding solder is modelled as a rather soft material (~10 GPa) due to the mix of Sn and Pb.
- 4. Parametric Analyses:
  - Bonded/frictional stack.
  - Number of stacks (3, 4, 6, 8).
  - Width of stacks (3 mm, 4 mm, 6 mm).



#### **HTS-Based Target Solenoids: Tapes Stresses**



### **HTS-Based Target Solenoids: Optimal Cooling**



Compared to typical conditions at 4.5 K, operation at 20 K implies

- High pressure, o(20) bar
- Large temperature increase, o(3) K

### **Conclusions and Outlook**

- We are looking for a solution to the design of the target and capture channel of the Muon Collider, which needs a peak field of 20 T on axis, based on an HTS force-flow cooled cable operating at 20 K
  - Lower footprint, mass, stored energy and cost than a LTS/NC hybrid
  - Better energy efficiency than a 4.5 K system
- Though there is much work to do, *the design selected seems not too far from being feasible !*
- This is also interesting because of implications for
  - Compact fusion machines
  - Hybrid UHF magnets for science





# REFERENCES

- 1. R.J. Weggel, N. Souchlas, H.G. Kirk, V.B. Graves, K.T. McDonald, A TARGET MAGNET SYSTEM FOR A MUON COLLIDER AND NEUTRINO FACTORY, TUPS053 Proceedings of IPAC2011, San Sebastián, Spain
- R.J. Weggel, N. Souchlas, H.K. Sayed, J.S. Berg, H.G. Kirk, X. Ding, V.B. Graves, K.T. McDonald, DESIGN OF MAGNETS FOR THE TARGET AND DECAY REGION OF A MUON COLLIDER/NEUTRINO FACTORY TARGET TUPFI073 Proceedings of IPAC2013, Shanghai, China
- 3. C. Rogers, Overview of target, capture and cooling complex, <u>https://indico.cern.ch/event/1147941/</u>
- 4. H.K. Sayed and J. S. Berg, Optimized capture section for a muon accelerator front end, PHYSICAL REVIEW SPECIAL TOPICS ACCELERATORS AND BEAMS 17, 070102 (2014)

## THANK YOU

### Introduction: Conductor

#### **Conductor features**

- Diameter of central cooling channel = 8 mm.
- Cable diameter = 23.5 mm.
- Square steel jacket 39.5 mm x 39.5 mm (minimum thickness of 8 mm).
- 1 mm thick turn insulation.

#### **Cable features (parametric studies, 50 tapes/stack)**

- Bonded/frictional stack-former contact.
- 3/4/6/8 stacks of HTS tapes.
- 3/4/6 mm wide HTS tapes.

#### HTS tape features (90 um thickness)

- 44 um thick Hastelloy.
- 20 um thick copper layers (x2).
- 2 um thick silver layers (x2).
- 1.6 um REBCO layer.
- 0.4 um buffer layer.



### **Introduction: Material Properties**

|                       | Steel | Copper | Insulation | Filler | WP<br>(smeared) | Solder | HTS Tape<br>(smeared) | CO LOND                  | Surface:<br>k = 1 |
|-----------------------|-------|--------|------------|--------|-----------------|--------|-----------------------|--------------------------|-------------------|
| E <sub>x</sub> [GPa]  | 205   | 110    | 12         | 7      | 112             | 10     | 100                   | Interface:               | $\kappa - 2$      |
| E <sub>y</sub> [GPa]  | 205   | 110    | 20         | 7      | 112             | 10     | 121                   | $k=1$ - $(2 \mu m)$      | k=3               |
| E <sub>z</sub> [GPa]  | 205   | 110    | 20         | 7      | 160             | 10     | 132                   | Silver                   | L = A             |
| v <sub>xy</sub> []    | 0.29  | 0.33   | 0.33       | 0.3    | 0.25            | 0.33   | 0.25                  | k=2 -                    | $\kappa = 4$      |
| v <sub>xz</sub> []    | 0.29  | 0.33   | 0.33       | 0.3    | 0.21            | 0.33   | 0.24                  | k=3 REP 24m              | k=5               |
| v <sub>yz</sub> []    | 0.29  | 0.33   | 0.17       | 0.3    | 0.21            | 0.33   | 0.30                  | Buffer (0.2              |                   |
| G <sub>xy</sub> [GPa] | 79    | 41     | 6          | 3      | 31              | 4      | 37                    | $k=4$ - $2k^2 50^{-110}$ |                   |
| G <sub>xz</sub> [GPa] | 79    | 41     | 6          | 3      | 42              | 4      | 46                    | Substre                  |                   |
| G <sub>yz</sub> [GPa] | 79    | 41     | 6          | 3      | 42              | 4      | 43                    |                          |                   |

Supercond. Sci. Technol. 33 (2020) 044015

P Gao et al

Properties of HTS tape obtained from smearing of isotropic properties of individual components at 77 K.

P. GAO, et al. Superconductor Science and Technology, 2020, vol. 33, no 4, p. 044015.

|                 | Young's modulus E (GPa) |            | Poisson's ratio $v$ | Yield s<br>$\sigma_y$ (1 | trength<br>MPa) | Tangent modulus $E_t$ (GPa) | CTE $\alpha$ (×10 <sup>-6</sup> K <sup>-1</sup> ) |  |
|-----------------|-------------------------|------------|---------------------|--------------------------|-----------------|-----------------------------|---------------------------------------------------|--|
| Temperature (K) | 77                      | 300        |                     | 77                       | 300             |                             |                                                   |  |
| Copper          | 85                      | 70         | 0.34                | 330                      | 190             | 5                           | 17.7                                              |  |
|                 | [17]                    | [17]       | [11]                | [17]                     | [17]            | [17]                        | [8, 10, 11]                                       |  |
| Silver          | 7                       | 6          | 0.37                | 1                        | 4               | 1                           | 17.1                                              |  |
|                 | [36                     | , 37]      | [36]                | [36,                     | 37]             | [36]                        | [10, 36]                                          |  |
| REBCO           | 1                       | 57         | 0.3                 | 10                       | 30              | 1                           | 11                                                |  |
|                 | [8, 10, 1               | 1, 25, 38] | [10, 11]            | [8]                      | 3]              |                             | [8, 10, 11]                                       |  |
| Buffer          | 1                       | 70         | 0.226               | 10                       | 30              | 1                           | 9.5                                               |  |
|                 | [2                      | 25]        | [25]                |                          |                 |                             | [25]                                              |  |
| Hastelloy       | 178                     | 170        | 0.307               | 1200                     | 980             | 6                           | 14                                                |  |
| -               | [17]                    | [17]       | [11]                | [17]                     | [17]            | [17]                        | [8, 10, 11, 25, 38]                               |  |

Table 1. Material properties of all the constituent materials of the REBCO conductor [8, 10, 11, 17, 25, 36–38].

### Introduction: Loads



- No pre-compression needed to keep the coils together.
- Gravity load is not considered.
- Cool-down is not considered.
- Only Lorentz forces applied.
- No cyclic loading considered (fatigue).

Net Vertical Forces

| Net vertical i orces    |  |
|-------------------------|--|
| (without chicane coils) |  |

| Coil | Rc [m] | Zc [m] | DR [m] | DZ [m] | NR | NZ | I [A] | lt [MAt] | Fz [MN] | Fz [MN]  |
|------|--------|--------|--------|--------|----|----|-------|----------|---------|----------|
| 1    | 0.849  | -0.185 | 0.498  | 0.830  | 12 | 20 | 58905 | 14.137   | 251.2   | 251.2    |
| 2    | 0.870  | 0.665  | 0.540  | 0.830  | 13 | 20 | 60710 | 15.785   | 59.50   | 59.51    |
| 3    | 0.870  | 1.515  | 0.540  | 0.830  | 13 | 20 | 60392 | 15.702   | -101.0  | -101.0   |
| 4    | 0.808  | 2.365  | 0.415  | 0.830  | 10 | 20 | 51654 | 10.331   | -101.4  | -101.4   |
| 5    | 0.766  | 3.215  | 0.332  | 0.830  | 8  | 20 | 47469 | 7.595    | -58.48  | -58.48   |
| 6    | 0.704  | 4.065  | 0.208  | 0.830  | 5  | 20 | 46504 | 4.650    | -17.10  | -17.10   |
| 7    | 0.745  | 4.708  | 0.291  | 0.415  | 7  | 10 | 46293 | 3.240    | -16.60  | -16.60   |
| 8    | 0.704  | 5.423  | 0.208  | 0.415  | 5  | 10 | 53168 | 2.658    | -2.179  | -2.177   |
| 9    | 0.662  | 6.065  | 0.125  | 0.830  | 3  | 20 | 43280 | 2.597    | -5.691  | -5.69    |
| 10   | 0.662  | 6.915  | 0.125  | 0.830  | 3  | 20 | 42146 | 2.529    | -2.609  | -2.608   |
| 11   | 0.642  | 7.765  | 0.083  | 0.830  | 2  | 20 | 49452 | 1.978    | -1.687  | -1.686   |
| 12   | 0.642  | 8.615  | 0.083  | 0.830  | 2  | 20 | 44183 | 1.767    | -0.9150 | -0.9147  |
| 13   | 0.642  | 9.465  | 0.083  | 0.830  | 2  | 20 | 39567 | 1.583    | -0.7432 | -0.7428  |
| 14   | 0.642  | 10.315 | 0.083  | 0.830  | 2  | 20 | 32713 | 1.309    | -0.1610 | -0.1603  |
| 15   | 0.642  | 10.958 | 0.083  | 0.415  | 2  | 10 | 46717 | 0.934    | -0.8960 | -0.8958  |
| 16   | 0.642  | 11.673 | 0.083  | 0.415  | 2  | 10 | 45905 | 0.918    | 0.3742  | 0.3754   |
| 17   | 0.621  | 12.315 | 0.042  | 0.830  | 1  | 20 | 52310 | 1.046    | -0.3951 | -0.3941  |
| 18   | 0.621  | 13.165 | 0.042  | 0.830  | 1  | 20 | 56056 | 1.121    | -0.0839 | -0.08169 |
| 19   | 0.621  | 14.015 | 0.042  | 0.830  | 1  | 20 | 51602 | 1.032    | -0.0973 | -0.09354 |
| 20   | 0.621  | 14.865 | 0.042  | 0.830  | 1  | 20 | 51376 | 1.028    | -0.0427 | -0.03481 |
| 21   | 0.621  | 15.715 | 0.042  | 0.830  | 1  | 20 | 50471 | 1.009    | -0.0091 | 0.01137  |
| 22   | 0.621  | 16.565 | 0.042  | 0.830  | 1  | 20 | 52861 | 1.057    | -0.0188 | 0.06418  |
| 23   | 0.621  | 17.415 | 0.042  | 0.830  | 1  | 20 | 57438 | 1.149    | -0.9872 | -0.3138  |
|      |        |        |        |        |    |    |       |          |         |          |

### Analysis Strategy: Overview



3-D Homogenization Model

#### Analysis Strategy: Global Models



Most loaded coil for detailed analysis

#### Global displacements

#### Analysis Strategy: Local Models I

#### Magnetic Field [T] in Coil 2 cables

Tresca Stress [Pa] in Coil 2 jackets

🔼 🙆 🙆 🙆 🚫 O O O O O O O O  $\odot$ i 💿 i 💿

Fine distribution of magnetic field

ANSYS Release 19.2 Build 19.2 NODAL SOLUTION STEP=1 SUB =1TIME=1 BSUM (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat SMN =.012571 SMX =20.8521 .012571 2.32807 4.64357 6.95907 9.27457 11.5901 13.9056 16.2211 18.5366 20.8521



Stresses in jackets and insulation

ANSYS Release 19.2 Build 19.2 NODAL SOLUTION STEP=1 SUB =7TIME=1 SINT (AVG) PowerGraphics EFACET=1 AVRES=Mat DMX = .00259SMN =.220E+09 SMX =.787E+09 .220E+09 .283E+09 .346E+09 .409E+09 .472E+09 .535E+09 .598E+09 Frictional contact between .661E+09 .724E+09 cable and jacket .787E+09 ANSYS Release 19.2 Build 19.2 NODAL SOLUTION STEP=1 SUB =7 TIME=1 CONTPRES (AVG) DMX =.002597 SMX =.821E+08 .912E+07 .182E+08 .274E+08 .365E+08 .456E+08 .547E+08 .638E+08 .730E+08 .821E+08 21

### Analysis Strategy: Local Models I



| ANSY | S  | R  | e | 1 | e | a | s | е  |
|------|----|----|---|---|---|---|---|----|
| Buil | d  | 1  | 9 |   | 2 |   |   |    |
| NODA | L  | s  | 0 | L | U | Т | I | ON |
| STEP | =1 |    |   |   |   |   |   |    |
| SUB  | =7 | 7  |   |   |   |   |   |    |
| TIME | =1 |    |   |   |   |   |   |    |
| SZ   |    |    |   |   | ( | A | V | G) |
| RSYS | =( | )  |   |   |   |   |   |    |
| Powe | r  | Gr | a | р | h | i | С | s  |
| EFAC | ΕT | != | 1 | - |   |   |   |    |
| AVRE | S= | =M | a | t |   |   |   |    |
| DMX  | =. | 0  | 0 | 3 | 7 | 7 | 6 |    |
| SMN  | =. | 1  | 4 | 7 | E | + | 0 | 9  |
| SMX  | =. | 5  | 5 | 5 | E | + | 0 | 9  |
|      |    | 1  | 4 | 7 | E | + | 0 | 9  |
|      |    | 1  | 9 | 2 | E | + | 0 | 9  |
|      |    | 2  | 3 | 8 | E | + | 0 | 9  |
|      |    | 2  | 8 | 3 | E | + | 0 | 9  |
|      |    | 3  | 2 | 8 | E | + | 0 | 9  |
|      |    | 3  | 7 | 3 | E | + | 0 | 9  |
|      |    | 4  | 1 | 9 | E | + | 0 | 9  |
|      |    | 4  | 6 | 4 | E | + | 0 | 9  |
|      |    | 5  | 0 | 9 | E | + | 0 | 9  |
|      |    | 5  | 5 | 5 | E | + | 0 | 9  |
|      |    |    |   |   |   |   |   |    |



ANSYS Release 19.2 Build 19.2 NODAL SOLUTION STEP=1 SUB =7TIME=1 SY (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX = .003776SMN =-.364E+09 SMX = .365E + 08-.364E+09 -.320E+09 -.275E+09 -.231E+09 -.186E+09 -.142E+09 -.970E+08 -.525E+08 -.799E+07 .365E+08

#### Analysis Strategy: Local Models II



#### Stresses in HTS Tapes

Stress components of interest in the HTS tapes (de-bonding, degradation):

- Tensile stress across HTS tapes.
- Shear stress in HTS tapes.



The tapes are modelled as relatively stiff components (~100 GPa) due to the large amount of hastelloy and copper.

The surrounding solder is modelled as a rather soft material (~10 GPa) due to the mix of Sn and Pb.

Parametric Analyses:

- Bonded/frictional stack.
- Number of stacks (3, 4, 6, 8).
- Width of stacks (3 mm, 4 mm, 6 mm).

### Bonded/Frictional Stack



#### Stack Number (6 mm wide tape, frictional contact)



#### Stack Number (4 mm wide tape, frictional contact)



### Stack Number (6 mm wide tape, frictional contact)



#### Stack Width (4 stacks, frictional contact)



#### Stack Width (6 stacks, frictional contact)



### Tape Thickness (4 stacks, frictional contact)



### Solder Stiffness (4 stacks, frictional contact)



### Stack Number (6 mm wide tape, frictional contact)



#### Structural Design Criteria & Assessment

ITER Magnet Structural Design Criteria:

- Part 1: Main Structural Components and Welds.
- Part 2: Magnet Windings (Radial Plates and Conductors) with High and Low Voltage Insulation and Epoxy Filler.
- Part 3: Bolts, Keys, Supports and Special Components.
- Part 4: Cryogenic Piping.

| 3 | META                                                           | LLIC COMPONENT CRITERIA 4                                  |  |  |  |  |  |  |
|---|----------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|--|
|   | 3.1 STA                                                        | TIC STRESS LIMITS FOR CONDUCTOR JACKETS AND RADIAL PLATES  |  |  |  |  |  |  |
|   | 3.1.1                                                          | Plastic Yielding                                           |  |  |  |  |  |  |
|   | 3.1.2                                                          | Fracture                                                   |  |  |  |  |  |  |
|   | 3.2 FAT                                                        | IGUE STRESS LIMITS FOR CONDUCTOR JACKETS AND RADIAL PLATES |  |  |  |  |  |  |
|   | 3.2.1                                                          | Procedure                                                  |  |  |  |  |  |  |
|   | 3.2.2                                                          | Postulated Initial Defects                                 |  |  |  |  |  |  |
|   | 3.2.3                                                          | Residual Stress                                            |  |  |  |  |  |  |
|   | 3.2.4                                                          | Limits on Crack Growth                                     |  |  |  |  |  |  |
| 4 | 4 NON-METALLIC COMPONENT CRITERIA                              |                                                            |  |  |  |  |  |  |
|   | 4.1 Sco                                                        | PE                                                         |  |  |  |  |  |  |
|   | 4.2 Des                                                        | IGN CRITERIA FOR HIGH-VOLTAGE INSULATION SYSTEMS           |  |  |  |  |  |  |
|   | 4.2.1                                                          | Compressive-Stress Allowable Normal to Reinforcing Plane   |  |  |  |  |  |  |
|   | 4.2.2                                                          | Tensile-Strain Allowable Normal to Reinforcing Plane       |  |  |  |  |  |  |
|   | 4.2.3                                                          | Shear Stress Allowable                                     |  |  |  |  |  |  |
|   | 4.2.4                                                          | Strain Allowable in Plane of Reinforcing10                 |  |  |  |  |  |  |
|   | 4.3 Des                                                        | IGN CRITERIA FOR LOW-VOLTAGE INSULATION SYSTEMS            |  |  |  |  |  |  |
|   | 4.3.1                                                          | Through Thickness Tensile and Shear Stress                 |  |  |  |  |  |  |
|   | 4.3.2 Compressive-Stress Allowable Normal to Reinforcing Plane |                                                            |  |  |  |  |  |  |
|   | 4.4 DES                                                        | IGN CRITERIA FOR COMPOSITE STRUCTURAL COMPONENTS           |  |  |  |  |  |  |

#### Jackets

- Only static stress limits are considered.
- Relevance of fatigue stress to be discussed (cyclic loading?).

#### Turn insulation

#### Structural Design Criteria & Assessment: Stress Linearization

$$\sigma_{ij}(x) \approx \sigma_{m,ij} + \sigma_{b,ij} \frac{2x}{t}, \qquad -\frac{t}{2} \le x \le \frac{t}{2}$$

- $\sigma_{m,ij}$  = membrane stress tensor (constant part).
- $\sigma_{b,ij}$  = bending stress tensor (linear part).







Source: ANSYS Theory Reference

$$\min_{\sigma_{m,ij},\sigma_{b,ij}} \frac{1}{t} \int_{-\frac{t}{2}}^{\frac{t}{2}} \left[ \sigma_{ij}(x) - \sigma_{m,ij} - \sigma_{b,ij} \frac{2x}{t} \right]^2 dx$$

$$\sigma_{m,ij} = \frac{1}{t} \int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{ij}(x) \, dx \qquad \sigma_{b,ij} = -\frac{6}{t^2} \int_{-\frac{t}{2}}^{\frac{t}{2}} x \sigma_{ij}(x) \, dx$$

- Once membrane and bending stress tensors are known, von Mises/Tresca stresses can be computed as usual.
- Von Mises/Tresca stresses do not vary linearly along the defined paths.

### Structural Design Criteria & Assessment: Stress Classification

#### **Primary Stress**, P

- Stress developed by imposed loading.
- Necessary to satisfy laws of equilibrium.
- Not self-limiting.
- Result in failure/gross distortion if considerably exceeds yield strength.
- Thermal stress is not primary.

#### Secondary Stress, Q

- Stress developed by constrain of adjacent material or by self-constraint of the structure.
- Self-limiting.
- Thermal stress.

$$\begin{aligned} \varepsilon_{ij} &= C_{ijkl}(\sigma_{kl}) \\ \varepsilon_{ij} &= \frac{1}{2}(u_{i,j} + u_{j,i}) \\ \sigma_{ij,j} &+ X_i &= 0 \\ u_i &= 0 \text{ on } \partial\Omega_D \\ \sigma_{ij}n_j &= 0 \text{ on } \partial\Omega_N \end{aligned} \qquad \qquad \begin{aligned} \varepsilon_{ij} &= C_{ijkl}(\sigma_{kl}) \\ \varepsilon_{ij} &= \frac{1}{2}(u_{i,j} + u_{j,i}) \\ \sigma_{ij,j} &= 0 \\ u_i &= 0 \text{ on } \partial\Omega_D \\ \sigma_{ij}n_j &= \overline{t}_i \text{ on } \partial\Omega_N \end{aligned} \qquad \qquad \begin{aligned} \varepsilon_{ij} &= C_{ijkl}(\sigma_{kl} - \alpha_{kl}\Delta T) \\ \varepsilon_{ij} &= \frac{1}{2}(u_{i,j} + u_{j,i}) \\ \sigma_{ij,j} &= 0 \\ u_i &= 0 \text{ on } \partial\Omega_D \\ \sigma_{ij}n_j &= \overline{t}_i \text{ on } \partial\Omega_N \end{aligned} \qquad \qquad \end{aligned} \qquad \begin{aligned} \varepsilon_{ij} &= C_{ijkl}(\sigma_{kl} - \alpha_{kl}\Delta T) \\ \varepsilon_{ij} &= \frac{1}{2}(u_{i,j} + u_{j,i}) \\ \sigma_{ij,j} &= 0 \\ u_i &= 0 \text{ on } \partial\Omega_D \\ \sigma_{ij}n_j &= 0 \text{ on } \partial\Omega_N \end{aligned} \qquad \qquad \end{aligned}$$

#### **Rule of thumb:**

 $\varepsilon_{ij} = \frac{1}{2}(u$ 

 $u_i = 0$ 

 $\sigma_{ij,j}$  +

- Thermal stresses are classified as secondary.
- Stresses induced by EM loads, inertial/gravity loads, pressure loads, etc., are classified as primary.
#### **ITER MSDC Part 2 for Metallic Components:**

Allowable stress:

$$S_m = \frac{2}{3}S_y$$

- Primary membrane stress:
- Primary membrane + bending stress:
- Primary + secondary stress

 $P_m \le 1.0 \ K_m \ S_m$  $P_m + P_b \le 1.3 \ K_m \ S_m$  $P + Q \le 1.5 \ K_m \ S_m$ 

 $K_m$  depends on type of service conditions:

#### Table 3-1 Km factor values for base metal and weld joints

| Service Level | Base metal | Welds |
|---------------|------------|-------|
| А             | 1.0        | 1.0   |
| В             | 1.1        | 1.1   |
| C *           | 1.2        | 1.2   |
| D *           | 1.5        | 1.5   |

\* Evaluation of secondary stress is not required.

#### ITER MSDC Part 2:

- $K_m = 1.0$
- $S_y = 1000 MPa$
- Allowable stress:
- Primary membrane stress:
- Primary membrane + bending stress:

| tube or square<br>sections | TF conductor jacket, CS<br>conductor jacket | Modified and<br>aged 316 LN for<br>Nb3Sn, as<br>extruded circular<br>tube or square<br>sections | 205GPa<br>$\sigma_y$ =1000MPa<br>$\sigma_u$ =1600MPa | K <sub>IC</sub> =<br>150MPam <sup>1/2</sup> | C=3.86E-11m/cycle<br>m=2.394 |
|----------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|------------------------------|
|----------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|------------------------------|

ANSYS Release 19.2

$$S_m = \frac{2}{3}S_y = 667 MPa$$

 $P_m \le 1.0 \ K_m \ S_m = 667 \ MPa$ 

 $P_m + P_b \le 1.3 K_m S_m = 867 MPa$ 

Primary + secondary stress (not considered, no thermal load applied).



- Copper former is not intended to be a structural component in the cable but it reacts the magnetic load due to its relatively high stiffness (110 GPa vs. 205 GPa of steel).
- The yield strength of copper is rather low compared to that of steel (factor ~3)), at least at room temperature (strength at cryogenic temperature needs to be investigated).

т, ℃ S<sub>v min</sub>, plates, MPa S<sub>v min</sub>, tubes, MPa S<sub>v min</sub>, rods, MPa 

Table A.S30.3.2-1: Minimum yield strength for plates, tubes and rod products from pure copper

Table A.S30.3.3-1: Minimum tensile strength of pure copper

| T, ℃                      | 20  | 50  | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| S <sub>u, min</sub> , MPa | 200 | 192 | 178 | 165 | 152 | 139 | 127 | 116 | 104 | 93  | 83  |



#### ITER MSDC Part 2 for High-Voltage Insulation:

1. Allowable compressive stress normal to the reinforcing plane. The compressive static stress in the throughthickness direction of the insulating material is limited to 50% of the minimum ultimate compressive strength:

$$S_c = 0.5\sigma_{cs}$$

- 2. Allowable tensile strain normal to reinforcing plane. No primary tensile strain is allowed in the direction normal to the adhesive bonds between metal and composite.
- 3. Allowable shear stress. The allowable shear strength of an insulator depends on the applied compressive stress.
- 4. Allowable strain in plane of reinforcing. The allowed tensile or compressive strain in the plane of the insulation material is in the range [-0.5%, 0.5%].

|                               |                                        | Minimum specified properties at 4K                                                                       |                                                                                                 |                                                                                                                                                  |  |  |
|-------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Components                    | Material and                           | Young's Modulus,                                                                                         | Static Stress                                                                                   | Fatigue Stress Limits                                                                                                                            |  |  |
|                               | Form                                   | Yield and                                                                                                | Limits                                                                                          |                                                                                                                                                  |  |  |
|                               |                                        | Ultimate Strength                                                                                        |                                                                                                 |                                                                                                                                                  |  |  |
| TF, CS, PF Turn<br>Insulation | VPI epoxy glass<br>with kapton barrier | $E_{1}=E_{2}=20GPa$ $E_{3}=12GPa$ $G(all)=6GPa$ $v_{12}=0.17$ $v_{13}=v_{23}=0.33$ $\sigma_{cs}=1200MPa$ | $\tau_0$ =85MPa<br>$C_2$ =0.45 for<br>$S_{c(n)}$ <58MPa<br>Sss=68.6MPa for<br>$58$ < $S_{c(n)}$ | $\begin{array}{l} \tau_{o} = 50 MPa \\ C_{2} = 0.45 \ \text{for} \\ S_{c(n)} < 55 MPa \\ Ssf = 50 MPa \ \text{for} \\ 50 < S_{c(n)} \end{array}$ |  |  |



1. Allowable compressive stress normal to the reinforcing plane.

$$S_c = 0.5\sigma_{cs} = 600 MPa$$



2. Allowable tensile strain normal to reinforcing plane.





Small spots in the corner regions show normal tensile strain likely due to the fact that bonded insulation layers are assumed, and no separation is allowed.

3. Allowable shear stress.





A usage factor is defined as the ratio between element shear stress and allowable shear stress, which must be less than 1. Negative values correspond to tensile stresses that should be avoided, but these are likely due to the modelling of contact between adjacent insulating layers.

4. Allowable strain in plane of reinforcing.



ANSYS Release 19.2 Build 19.2 NODAL SOLUTION STEP=1 SUB =7TIME=1 EPTOY (AVG) RSYS=SOLU PowerGraphics EFACET=1 AVRES=Mat DMX = .00378SMN = -.004052SMX =.002105 -.005 -.003889 -.002778 -.001667 -.556E-03 .556E-03 .001667 .002778 .003889 .005



ANSYS Release 19.2 Build 19.2 NODAL SOLUTION STEP=1 SUB =7TIME=1 EPTOZ (AVG) RSYS=SOLU PowerGraphics EFACET=1 AVRES=Mat DMX = .00378SMN =.899E-03 SMX = .00267-.005 -.003889 -.002778 -.001667 -.556E-03 .556E-03 .001667 .002778 .003889 .005

[-0.09%, +0.27%]

### **COMPARE FIELD ON AXIS**



# **Collider Choices**

- Hadron collisions: compound particles
  - LHC collides 13.6 TeV protons
  - Protons are mix of quarks, anti-quarks and gluons
  - Very complex to extract physics
  - But can reach high energies

- Lepton collisions: elementary particles
- LEP reached 0.205 TeV with electron-positron collisions
- Clean events, easy to extract physics
- Lepton collisions ⇒
   precision measurements
  - Hard to reach high energies













#### Hence present energy frontier is probed by proton rings

Novel approach: the **muon collider** Large mass suppresses synchrotron radiation => circular collider, **multi-pass** Fundamental particle yields clean collisions => **less beam energy** than protons **But lifetime at rest only 2.2 µs** (increases with energy)

#### The muon collider is part of the European Accelerator R&D Roadmap

e<sup>-</sup>: 0.511 MeV μ: 106 MeV p<sup>+</sup>: 938 MeV







## Target and capture solenoid – 1/4



Large stored energy o(2) GJ, mass o(300) tons, cost o(100) M



## Target and capture – 2/4

Reduce the mass (CAPEX) of the system, and increase operating temperature to improve cryogenic CoP (OPEX)





Target and capture – 3/4





## Target and capture – 4/4





### Looks much like an HTS magnet for fusion !!!

52

# Coil geometry

| Coil    | Rc<br>(m)    | Zc<br>(m)  | dR<br>(m) | dZ<br>(m) | Layers<br>(-) | Pancakes<br>(-) | Iconductor<br>(A) | Turns<br>(-)   | Icoil<br>(MA-turn) | Lpancake<br>(m) |
|---------|--------------|------------|-----------|-----------|---------------|-----------------|-------------------|----------------|--------------------|-----------------|
| 1       | 0.849        | -0.185     | 0.498     | 0.83      | 12            | 20              | 58905             | 240            | 14.14              | 64.0            |
| 2       | 0.87         | 0.665      | 0.54      | 0.83      | 13            | 20              | 60710             | 260            | 15.78              | 71.1            |
| 3       | 0.87         | 1.515      | 0.54      | 0.83      | 13            | 20              | 60392             | 260            | 15.70              | 71.1            |
| 4       | 0.808        | 2.365      | 0.415     | 0.83      | 10            | 20              | 51654             | 200            | 10.33              | 50.8            |
| 5       | 0.766        | 3.215      | 0.332     | 0.83      | 8             | 20              | 47469             | 160            | 7.60               | 38.5            |
| 6       | 0.704        | 4.065      | 0.208     | 0.83      | 5             | 20              | 46504             | 100            | 4.65               | 22.1            |
| 7       | 0.745        | 4.708      | 0.291     | 0.415     | 7             | 10              | 46293             | 70             | 3.24               | 32.8            |
| 8       | 0.704        | 5.423      | 0.208     | 0.415     | 5             | 10              | 53168             | 50             | 2.66               | 22.1            |
| 9       | 0.662        | 6.065      | 0.125     | 0.83      | 3             | 20              | 43280             | 60             | 2.60               | 12.5            |
| . 10    | 0.662        | 6.915      | 0.125     | 0.83      | 3             | 20              | 42146             | 60             | 2.53               | 12.5            |
| 1111144 | 0.642        | 7.765      | 0.083     | 0.83      | 2             | 20              | 49452             | 40             | 1.98               | 8.1             |
| 11148   | A - 3 642    | 8.615      | 0.083     | 0.83      | 2             | 20              | 44183             | 40             | 1.77               | 8.1             |
|         | A TEAS       | CV240465   | 0.083     | 0.83      | 2             | 20              | 39567             | 40             | 1.58               | 8.1             |
|         | R THE        | THOMAS CO. | 0.083     | 0.83      | 2             | 20              | 32713             | 40             | 1.31               | 8.1             |
| 15      | 75-5-        |            |           | 0.415     | 2             | 10              | 46717             | 20             | 0.93               | 8.1             |
|         | 0.64         | -1         |           | - A       | 2             | 10              | 45905             | 20             | 0.92               | 8.1             |
| E C     | <u>10.62</u> | 12.31      | 1425      |           |               | 20              | 52310             | 20             | 1.05               | 3.9             |
| 18      |              |            |           | 6.84      |               | 42              | AD 56056          | 20             | 1.12               | 3.9             |
| 19      | 0.621        | 14.015     |           | 2023      | 22            |                 |                   | $\frac{20}{2}$ | 1.03               | 3.9             |
| 20      | 0.621        | 14.865     | 0.042     | 0.83      |               |                 |                   |                | 7                  | 3.9             |
| 21      | 0.621        | 15./15     | 0.042     | 0.83      | 1             |                 | A POHAL           |                | 17                 | 17              |
| 22      | 0.621        | 16.565     | 0.042     | 0.83      | 1             | 20              | 52001             |                |                    | 1-12            |
| 23      | 0.621        | 17.415     | 0.042     | 0.83      | 1             | 20              | 57438             | 20             | 110                |                 |

Focus on coil C02 (highest current, highest field, higest energy)



## **Conductor design**

| HTS tape thickness       | (mm)               | 62   | 10000           |               |
|--------------------------|--------------------|------|-----------------|---------------|
| HTS tapes                | (-)                | 80   | 10000           | 1             |
| HTS stack width          | (mm)               | 6    |                 | N             |
| HTS stack thickness      | (mm)               | 5    |                 | $\rightarrow$ |
| HTS stack width          | (mm)               | 6    | 1000            | V             |
| HTS tapes                | (-)                | 80   | *2)             |               |
| Number of HTS stacks     | (-)                | 4    | *<br>E          | Ľ             |
|                          |                    |      | E (A/           | H             |
| Copper diameter          | (mm)               | 23   | <u>م</u><br>100 |               |
| Hole diameter            | (mm)               | 8    |                 |               |
| Wetted perimeter         | (mm)               | 25   |                 |               |
| Wrap thickness           | (mm)               | 0.25 |                 | -             |
| Jacket outer dimension   | (mm)               | 39.5 | 10              |               |
|                          | <b>、</b>           |      |                 | 0             |
| A <sub>SC</sub>          | (mm²)              | 4.2  |                 |               |
| A <sub>Substrate</sub>   | (mm²)              | 77   |                 |               |
| A <sub>Cu</sub>          | (mm²)              | 361  |                 |               |
| A <sub>Helium</sub>      | (mm²)              | 50   |                 |               |
| A <sub>Wrap</sub>        | (mm²)              | 18   |                 |               |
| A <sub>Jacket</sub>      | (mm²)              | 1127 |                 |               |
| A <sub>Cable Space</sub> | (mm²)              | 511  |                 |               |
| A <sub>Conductor</sub>   | (mm <sup>2</sup> ) | 1560 |                 |               |





## Heat load from recirculation









# **Optimal cooling conditions**



- Compared to typical conditions at 4.5 K, operation at 20 K implies
  - High pressure, o(20) bar
    - Large temperature increase, o(3) K



NOTE: time stucture ignored





# Nominal cooling condition

- A flow dm/dt of approximately 8 g/s is required to remove a nuclear heat load of 150 W with a temperature increase  $\Delta T$  of 3 K
- With this flow the pumping loss is about 20 W (considering an adiabatic efficiency  $\eta_{pump}$  of 80 %)
- This is about 13 % of the nuclear heat load, and is an acceptable overhead
- It would be possible to remove higher heat loads under the same temperature increase, but the pumping loss grows rapidly, approximately like  $(dm/dt)^3$



CERN

۰

# Margin and stability – 1/3



Values of stability margin are (as expected) very high ! It is very unlikely that the cable will quench because of transient heat inputs

The stability margin is well above the enthalpy reserve of the cable, also including helium. The reason is that the transient is slow, and there is time to *conduct* and *convect* heat away even for very large INZ lengths

This effect is even more marked at low field (high temperature margin)



# Margin and stability – 2/3

- The temperature margin ∆T is about 10 K at nominal conditions of current, field and temperature
  - $I_{op} = 61 \text{ kA}$ •  $B_{op} = 20 \text{ T}$ •  $T_{op} = 20 \text{ K}$
- In the low field regions of the coil (e.g. 4 T) **the temperature margin is above 40 K**
- The large stability in the low field region may make protection difficult ?





# Margin and stability – 3/3



Operating at higher temperature than 20 K (e.g. 25 K) **may still be an option**, the energy margin is substantial

- Operating at lower temperature than 20 K (e.g. 15 K) does not bring a substantial benefit in energy margin
- Recall that the heat capacity drops dramatically at low temperature



## Detection and protection – 1/3

Coil Module 2 (high field and current)

- Single coil stored energy: 165 MJ
- Coulped stored energy: 299.7 MJ
- Dump voltage: 5 kV

INZ in the center of the double pancake 10 cm length quenched Exponential dump following trigger





## Detection and protection – 2/3



CERN

## Detection and protection – 3/3

- Study the detection and dump for quenches in the low field region or at low current/field
  - The low field region at nomnal current seems to be most dangerous
  - Low current/low field (e.g. during ramp) implies long detection times, but this appears compatible with modest hot-spot limits

| l <sub>op</sub><br>(kA) | B <sub>op</sub><br>(T) | t <sub>Detection</sub><br>(S) | T <sub>max</sub><br>(K) |
|-------------------------|------------------------|-------------------------------|-------------------------|
| 61                      | 20                     | 2.2                           | 130                     |
| 61                      | 4                      | 2.8                           | 172                     |
| 30                      | 9.84                   | 14.8                          | 140                     |



## **HTS** cable mechanics



twisted high field and high current cables are also



## **Opportunities and perspective**

- We are looking for a solution to the design of the target and capture channel of the Muon Collider, which needs a peak field of 20 T on axis, based on an HTS force-flow cooled cable operating at 20 K
  - Lower footprint, mass, stored energy and cost than a LTS/NC hybrid
  - Better energy efficiency than a 4.5 K system
- Though there is much work to do, the design selected seems not too far from being feasible !
  - This is also interesting because of implications for



**Compact fusion machines** 

Hybrid UHF magnets for science





### Proton-driven Muon Collider Concept





# The need for high field





### HTS is the only path beyond 16 T

# The need for energy

- CERN uses today **1.3 TWh** per year of operation, with peak power consumption of **200 MW** (running accelerators and experiments), dropping to **80 MW** in winter (technical stop period)
  - Electric power is drawn directly from the French 400 kV distribution, and presently supplied under agreed conditions and cost
  - Supply cost, chain and risk are obvious concerns for the present and future of the laboratory



| 15-Oct-2022 11:23:19        | Fill #: 8272 | Energy: 6800 GeV | I(B1): 3.35e+14 | I(B2): 3.35e+14 |
|-----------------------------|--------------|------------------|-----------------|-----------------|
|                             | ATLAS        | ALICE            | CMS             | LHCb            |
| Experiment Status           | STANDE       | CALIBRATION      | STANDBY         | NOT_READY       |
| Instantaneous Lumi [(ub.s)^ | -1] 0.468    | D.002            | 13.754          | 6.239           |
| BRAN Luminosity [(ub.s)^-   | 1] 96.8      | 1.1              | 1.1             | 6.7             |
| Fill Luminosity (nb)^-1     | 0.000        | 0.000            | 0.000           | 0.000           |
| Beam 1 BKGD                 | 0.000        | 7.432            | 4.355           | 0.033           |
| Beam 2 BKGD                 | 0.000        | 5.049            | 5.936           | 8.736           |
| Beta*                       | 0.60 n       | n 10.00 m        | 0.60 m          | 2.00 m          |
| Crossing Angle (urad)       | -170(V)      | 170(V)           | 170(H)          | -170(H)         |
| LHCb VELO Position GUT G    | ap: 54.0 mm  |                  | TOTE            | M: STANDBY      |





# Energy efficient cryogenics





#### HTS may be the only path towards a future collider



Aurélien REYS, Vincent BOS

Hélium : les nouvelles géographies d'une ressource critique Briefings de l'Ifri, 16 juin 2022

Future helium supply is limited and entails a substantial economical and availability **risk**  Consequences

#### **Current situation**

- Market shortage is affecting industrial and scientific customers
- Manufacturing industry contracts are impacted with volume limitations
- Large scientific instrument cannot do so & rely on established industrial partnership

#### Helium market still at risk in 2023 and for the coming years

- Uncertainty on the effective Russian production capacity and market access
- Algerian gas production transferred using pipeline instead of LNG
- No more back-up from the US federal authorities, Cliffside for sale ! (C&en News)

CERN

Helium is a by-product of natural gas



Tentative forecast in 2026 based on public announcements of new capacities available in quantity of Iso container of 4.5 tonnes

Courtesy of F. Ferrand, CERN


## The need for economics

- A large component in the magnet cost is the amount of superconductor (coil cross section)
- High-field superconductors are (significantly) more expensive than *good-old* Nb-Ti
- Need to work in two directions:
  - Reduce the coil cross section (increase J !)

$$B = \frac{2\mu_0}{\pi} Jw \sin(\varphi)$$
$$A_{coil} = 2\varphi(w^2 + 2R_{in}w) \sim \frac{1}{J^{1.5}}$$



Reduce unit conductor cost



HTS may offer both





## **Impressive cost reduction in HTS !**