

Introduction

- A Python code is used to implement the analytic formulas for the dipole and quadrupole in cos-theta and sector coil approximation.
- Starting from the fit of the critical current density, the short sample magnetic field (dipole) and the short sample gradient (quadrupole) are computed, for three different operating temperatures and superconductors. This provides the limitations due to the nature of the superconductor itself as a function of temperature, type of material and quantity of material (coil width).
- By adding a margin to the short sample values, the graphs become more realistic. This is followed by a discussion of margin in terms of enthalpy and temperature
- A graph of the bore diameter versus magnetic field is useful to show the allowed region taking into account the mechanical (stress), cost and protection limitations.
- Some approximations are used to validate the procedure, and then more complicated configurations will be studied (for example sector magnets at a higher order of approximation, with iron yoke and grading on the current density).

General Assumptions

- Superconducting materials:
- $\mathrm{NbTi} \quad \rightarrow$ the LHC cable as a reference $\quad \rightarrow$ Filling factor of pure superconductor $=0.27$
- $\mathrm{Nb}_{3} \mathrm{Sn} \rightarrow$ the FCC target performance as a reference \rightarrow Filling factor of pure superconductor $=0.3$
- ReBCO \rightarrow the Fujikura FESC AP tape as a reference \rightarrow Filling factor of pure superconductor $=0.02$

Dipole Magnetic Field

These margins are indicative;
> The coil width will be strongly limited by the cost.
> The magnetic field will be strongly limited by the stress.
they are used to observe behaviour.

Short Sample Dipole Magnetic field

with margin of 20% for LTS and 5% for HTS

Quadrupole Gradient

These margins are indicative;
they are used to observe behaviour.
> The coil width will be strongly limited by the cost.
$>$ The gradient will be strongly limited by the stress.

Short Sample Quadrupole Gradient

with margin of 20% for LTS and 5% for HTS

Discussion on the Margins

- The margin on the load line can be expressed in terms of margin in temperature.

We have chosen two indicative and reasonable values for margins on the load line for LTS and HTS, which are: 20% for the LTS (graph on the left) and 5% for the HTS (graph on the right).

Discussion on the Margins

- It's more physical talking about the enthalpy margin, which is linked to the temperature margin through the thermal capacity of the materials and the compositions of the strands.

Material	Operating Temp. [K]	Enthalpy Margin [mJ/cm3]	Temperature Margin [K]	Strand fraction	Cost	Stress Limit
NbTi	1.9	5	2	0.75	$200 € / \mathrm{kg}$	100 MPa
$\mathrm{Nb}_{3} \mathrm{Sn}$	4.2	20	4.5	0.70	$2000 € / \mathrm{kg}$	150 MPa
ReBCO	4.2	20	4.8	0.73	$8000 € / \mathrm{kg}$	300 MPa
	20	90	0.35			

- NbTi - LHC standard
- Strand Fraction $=0.48(\mathrm{Cu})+0.27(\mathrm{Sc})$
- $\mathrm{Nb}_{3} \mathrm{Sn}$ - HL-LHC standard
- Strand Fraction $=0.40(\mathrm{Cu})+0.30(\mathrm{Sc})$
- ReBCO - Enthalpy margin equal to HL-LHC - Strand Fraction $=0.20(\mathrm{Cu})+0.02(\mathrm{Sc})+0.01(\mathrm{Ag})+0.50$ (Hastelloy)
- Assume a cost limit of $100 \mathrm{k} €$ for the bare superconductor (the same limit for each material).

Bore Diameter vs Magnetic Field

Material	Operating Temp. [K]	Enthalpy Margin [mJ/cm3]	Temperature Margin [K]	Strand fraction	Cost	Stress Limit
NbTi	1.9	5	2	0.75	$200 € / \mathrm{kg}$	100 MPa

- Assumption of JO as Jc for each value of the magnetic field
- For each value of the magnetic field one can compute Jc(B, T)
- Knowing B and JO, the coil width can be computed from the load line formula
- The coil width increase with increasing B and decreasing Jc

Bore Diameter vs Magnetic Field

| Material | Operating Temp. [K] | Enthalpy Margin [mJ/cm3] | Temperature Margin [K] | Strand fraction | Cost | Stress Limit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Nb}_{3} \mathrm{Sn}$ | 4.2 | 20 | 4.5 | 0.70 | $2000 € / \mathrm{kg}$ | 150 MPa |

- Assumption of JO as Jc for each value of the magnetic field
- For each value of the magnetic field one can compute Jc(B, T)
- Knowing B and JO, the coil width can be computed from the load line formula
- The coil width increase with increasing B and decreasing Jc

Bore Diameter vs Magnetic Field

Material	Operating Temp. [K]	Enthalpy Margin [mJ/cm3]	Temperature Margin [K]	Strand fraction	Cost	Stress Limit
ReBCO	4.2	20	4.8	0.73	$8000 € / \mathrm{kg}$	300 MPa
	20	90	0.35			

- Assumption of JO as Jc for each value of the magnetic field
- Knowing B and JO, the coil width can be computed.
- For each value of the magnetic field one can compute $\operatorname{Jc}(\mathrm{B}, \mathrm{T})$
- The coil width increase with increasing B and decreasing Jc

Bore Diameter vs Magnetic Field

- A studied option is to fix the current density ($450 \mathrm{~A} / \mathrm{mm} 2$, for example).

This is interesting because using JO as Jc, in each point of the magnetic field we are using the maximum current density allowed by the properties of the material, but, of course, this is not usually done.
\checkmark We will work below the critical current density, particularly at low fields.

Also, working at the maximum current density can be a problem for the protection of the magnet; it should require huge coil width to dissipate the energy in case of quench.
\checkmark A solution can be found using a graded current density between LF and HF.

Protection Limit for Constant Cost

Maximum aperture allowed by protection limit, assuming constant coil cross-section (as limitd by conductor
cost)

- NbTi, Hotspot temperature limit 350 K : Low conductor cost allows large coil and low current density \rightarrow protection does not limit design
- $\mathrm{Nb}_{3} \mathrm{Sn}$, hotspot temperature limit 350 K : Higher cost starts to limit the coil size and force higher current density \rightarrow protection may become a limitation
- ReBCO, hotspot temperature limit 200 K: High cost requires small coil and very high current density \rightarrow Protection will be a limiting factor
- In all cases we assume 40 ms protection delay between original quench and quench protection system efficiency, see details:
https://indico.cern.ch/event/1240045/

Conclusions

Upcoming developments:

- We are currently working with analytical formulae in cos-theta and sector coil approximation.
- We are working to include a linear iron yoke (still using an analytical approach).
- We plan to include a current grading between LF and HF.
- We are looking for the best way to get the bore diameter vs magnetic field graph.

For the future:

- We would like to implement a Python code able to work with the Ansys software, to solve complex configurations that are not analytically tractable, thus making it possible to study multipole sectors and combined function magnets.

INFN

Thank you for your attention

Dipole - Performances of NbTi

- Fit's data from the LHC cable
- $\mathrm{T}=4.2 \mathrm{~K} \quad$ - Fixed aperture $=75 \mathrm{~mm}$
- Filling factor $=0.3$
- $\operatorname{Cos} \theta$ configuration
- Ratio between normal conductor and superconductor.
- Voids
- Insulation

Dipole - Performances of $\mathbf{N b}_{3} \mathbf{S n}$

- Fit's data from the FCC target performance
- Fixed aperture $=75 \mathrm{~mm}$
- $\mathrm{T}=4.2 \mathrm{~K}$

Nb3Sn - $\cos (\theta)$ configuration

- Filling factor $=0.3$
- $\operatorname{Cos} \theta$ configuration
- Ratio between normal conductor and superconductor.
- Voids
- Insulation

Dipole - Performances of YBCO

- Filling factor $=0.02 \longrightarrow$ Ratio between the total area of the cable to the superconductor area.

