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Introduction

▪ The MC under current investigation is proton driven. Protons impact on a solid or liquid target generating pions by 
inelastic collisions. [1] 

▪ The generated pions travels through a tapering region where the magnetic field is adiabatically decreasing. The 
effect of this section is to decrease the angular divergence of the produced pions. [2,3]

▪ Finally, the beam enters a chicane where the high momentum component of the beam is intercepted. Low 
momentum components (muons and pions) are forced to follow the field lines generated by a series of solenoids. [4]

▪ The scope of these studies is to assess the radiation load to the equipment in the target area (target and magnets) 
and develop a shielding design. All the simulation are conducted using FLUKA.

▪ All the results will be normalized per 2 MW proton beam intensity with 200 days of operation per year.

p impacting on a target, producing π± ...decaying in μ- and μ+
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Parameters

Now 2 MW

Note on the long term radiation damage: we considered 139 days of operation per 
year (1.2⨯107 s). In the general parameters table, we assume to operate for 107 s 
per year. All the results are given per year of operation.
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Target geometry: graphite option

Proton beam:
▪ P = 2 MW
▪ σ = 5 mm
▪ E = 5 GeV

Target:
▪ Graphite or liquid lead
▪ r = 1.5 mm (3 times the beam sigma)
▪ L = 1.78 interaction lengths (80 cm for 

graphite)

Generic target and shielding geometry:
▪ Tungsten considered for the shielding (engineering and material aspects to be studied)
▪ Neutron absorber currently under study

Shielding:
▪ rin = 17.5 cm
▪ rout = 60 cm
▪ Bulk made of solid tungsten, 

tentative layers of water and boron 
for neutron moderation and capture

Window & vessel:
▪ Be, Ti and stainless steel under 

consideration
▪ Thickness from 250 microns to ~5 mm

1

2

3
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Geometry: adiabatic tapering and chicane (v0.2)

Still preliminary! It is going 
to be updated to fit 
cooling requirements

~18 m

New HTS (VIPER) coils:
■ Higher power deposition 

and dose allowed.
■ DPA is still a concern

Internal shielding radius 
following parabolic shape 
(from C. Rogers) and map 

studies

Geometry from L. Bottura, P. Testoni and A. Portone: Https://indico.cern.ch/event/1183570/
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Magnetic field: adiabatic tapering and chicane

▪ For the magnetic field around the target, we used an in-house code around the beginning of the IMCC to 
have results set up quickly

▪ Together with colleagues from the magnets WG, we benchmarked the results, with existing codes and the 
results matches

https://indico.cern.ch/event/1240042/

https://indico.cern.ch/event/1240042/
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Target window

▪ The front window is the most radiation exposed component of the target. Back and lateral sides of 
the target are less exposed

▪ Several options have been considered and discarded (single and double layers of titanium, aluminum, 
stainless steel)

▪ The current material under consideration is Beryllium: low density, low Z → less energy deposition

The back side of 
the second Be 

layer is the 
"hottest" point ~ 50 times less DPA 

than Ti!

2 layers of Be 
(250 μm each)
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Target (graphite)

▪ The power deposition in the target depends on several parameters. We considered two possible 
cases:

▪ Beam and target parallel to the solenoid axis
▪ Beam and target tilted with 9 deg inclination (useful for spent beam extraction)

Target parallel to solenoid axis
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Target (graphite) tilted
▪ With a tilted target, part of the beam is 

entering from the lateral side
▪ Lower peak power 
▪ Beam and target tilted with 9 deg 

inclination (useful for spent beam 
extraction)

More details tomorrow morning: 
https://indico.cern.ch/event/1250075/contributions/5348856/

https://indico.cern.ch/event/1250075/contributions/5348856/
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Radiation effects in superconducting 
solenoids

▪ A thick shielding is required to protect the coils from the secondary particles coming from the target
▪ In case of liquid lead (or heavier) targets, the peak power density and DPA are higher

Scoring on the 
innermost 

solenoid coil

▪ Optimization process ongoing:
▪ Identifying minimal requirement for shielding in order to operate the magnets
▪ Increasing the magnet aperture in the hotspot and reducing it elsewhere(?)
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Muon yields

▪ We conducted a parametric scan to assess the muon yield (and emittance) depending on various 
parameters (beam energy, angle of impact, target and beam sizes, target lenght)

▪ While there is a slight variation in the total muon yield, the emittances are practically always the same

More details here: 
https://indico.cern.ch/event/1237101/contributions/5204412/attachments/2575066/4440149/angle_dpa_updateJan23.pdf

Could we consider 
larger beam spot 
sizes to simplify the 
window and target 
engineering?

https://indico.cern.ch/event/1237101/contributions/5204412/attachments/2575066/4440149/angle_dpa_updateJan23.pdf
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Tentative extraction channel

▪ With 1.8 interaction lengths, e-1.8=16.5% of the protons do not interact with the target. We want to extract 
those together with the high energy products of the interactions.

▪ A 9 degree tilted beam in the center could be a reasonable assumption to extract the beam.

The coil profile 
will need to be 

altered
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Energy fluences: general profiles

Target

Extraction

▪ Considering the kinetic energy of the particles, the fluences profiles are drawn. With those, we can estimate the 
aperture needed to extract the spent beam.

p Π+/Π- μ+/μ- ɣ e+/e-

0.38 0.037 / 
0.019

0.014 / 
0.008

0.001 0.0058 / 
0.0058

Relative power fluence per particle species

Low p 
particles

Spent proton 
beam
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Spot size

CDF of the radiance 
with r centered in  
(81, -6)

▪ To extract a significant fraction of the beam power, a large aprterure is needed. To extract 10% of the beam 
power, the aperture should be larger than 4 cm (radius)
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Conclusions

▪ The new geometry of the coils has been implemented in FLUKA. The past benchmarks show 
excellent agreement for the magnetic field evalutation

▪ Beryllium seems to be the proper choice for the target window. Past simulation with Ti showed 
unsustainable level for displacement damage

▪ The DPA and energy deposition in the window are still a problem for the target. Increasing the 
beam size of the proton beam can mitigate this phenomenon

▪ The target energy deposition and DPA have been calculated. Their effect have to be evaluated 
with the help of thermomechanical calculation

▪ The energy deposition and displacement damage has been evaluated in the superconducting 
solenoids. The shielding has to be optimized around the target region to further reduce the 
displacement damage

▪ Muon yield and emittances dependencies have been studied with a broad range of parameters

▪ A possible extraction channel has been devised. With a significant alteration of the tapering 
region it can be possible to extract ~10/15% of the driver power



Thank you
for your attention!
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