

Overview of requirements for the SRF system of RCS chain

Muon collider collaboration – annual meeting

Orsay, 21/06/2023 F. Batsch, R. Calaga, H. Damerau, I. Karpov

Acknowledgements: David Amorim, Fulvio Boattini, Luca Bottura, Alexej Grudiev, Elias Metral, Daniel Schulte, Akira Yamamoto

Outline

Introduction

Longitudinal beam dynamics requirements

- Distributed RF system
- Path length change

RF system overview

- Frequency choice and RF structure
- Beam loading and RF feedback
- Summary

Outline

Introduction

Longitudinal beam dynamics requirements

- Distributed RF system
- Path length change

RF system overview

- Frequency choice and RF structure
- Beam loading and RF feedback
- Summary

Introduction

Fast acceleration is key for muon survival rate

$$\frac{N}{N_0} = \exp\left(-\frac{1}{\tau_{\mu}}\int\frac{dt}{\gamma(t)}\right)$$

\rightarrow Needs large RF voltage in short length

- High-gradient RF system
- Huge total RF voltage per turn: tens of gigavolt

- \rightarrow Few turns, one μ^+ and one μ^- bunch simultaneously
- Impact longitudinal beam dynamics and RF system design?

The baseline RCS chain

■ Rapid cycling synchrotrons (RCS) chain, counter-rotating μ^+/μ^- bunches → 60 GeV → 0.31 TeV → 0.75 TeV → 1.5 TeV → 5 TeV

- Conventional RCS and 3 hybrid RCS
- Ombination of normal and superconducting magnets

The baseline RCS chain

- Rapid cycling synchrotrons (RCS) chain, counter-rotating μ^+/μ^- bunches → 60 GeV → 0.31 TeV → 0.75 TeV → 1.5 TeV → 5 TeV
- Challenging (preliminary) performance parameters from <u>accelerator</u> <u>design meeting</u> from 60 GeV → 5 TeV:
 - Total survival rate of 2/3 of muons
 - Only 10% longitudinal emittance blow-up (incl. $5 \rightarrow 60$ GeV stage!)
- Detailed parameter table: <u>https://cernbox.cern.ch/index.php/s/I9VpITncUeCBtiz</u>
- → F. Batsch, <u>Updates on the rapid cycling synchrotrons studies</u>, <u>Longitudinal tracking studies through the entire RCS chain</u>

- Two counter-rotating bunches, intensity up to $2.7 \cdot 10^{12} \mu/b$
- Extremely fast ramping, but moderate repetition rate of 5 Hz
 - Duty cycle < 1% (RCS1-3), ~3% (RCS4)</p>
- Hybrid magnet structure (RCS2-4)
 - Fixed super-conducting magnets (10 T)
 - Normal-conducting magnets ramping -B_{max}...B_{max} (±1.8 T)
 - Orbit length and revolution frequency changes during acceleration

and the second s

Outline

- - - -

Introduction

Longitudinal beam dynamics requirements

- Distributed RF system
- Path length change

RF system overview

- Frequency choice and RF structure
- Beam loading and RF feedback
- Summary

Large RF voltage in a synchrotron?

- Large synchrotron tune due to RF voltage
- Number of synchrotron oscillations per turn

$$Q_{\rm S} = \frac{\omega_{\rm S}}{\omega_0} = \sqrt{-\frac{h\eta e V_{\rm RF} \cos \phi_{\rm S}}{2\pi E \beta^2}} \propto \sqrt{V_{\rm RF} \cos \phi_{\rm S}}$$

- Stable synchrotron oscillations and phase focusing only for Q_S << 1/π (T. Suzuki, <u>KEK Report 96-10</u>)
- \rightarrow Can be easily exceeded in μ -accelerators
- \rightarrow Several smaller longitudinal kicks per turn
- → Distribute RF system over multiple sections

∳ rad/s

- Multiple longitudinal kicks per turn to smoothen synchrotron motion again
 - Stable synchrotron oscillations and phase focusing for Q_S << n_{RF} · 1/π
 - Tracking simulations to determine longitudinal emittance growth (with BLonD code)
 - → Favourable range of $n_{\rm RF} \approx 30$
 - \rightarrow Tune $Q_{\rm S}$ as large as 1.5
 - \rightarrow Details see F. Batsch

• Limit energy gain per RF section

 \rightarrow Avoid large energy difference between counter-rotating μ^+/μ^- beams

- During first turn in RCS1 energy gain is about 20% of beam energy!
- → Adapted transverse optics limits impact of beam energy differences
- → A. Chancé, <u>RCS parameters and optimization</u>

Impact of synchronous phase choice

Conservative initial choice of stable phase: $\phi_{s} = 45^{\circ}$

Increase up to 55° (RCS1) or even up to 60° (RCS2/3) under study \rightarrow

 \rightarrow Relax RF voltage requirements $\rightarrow \checkmark$ increase bunch length

Difficult to keep orbit length constant

→ Superconducting magnets act as spectrometers

	RCS1	RCS2	RCS3	RCS4
Path length difference, ΔI [mm]	0	9.1	2.7	9.4
Relative path length, △/// [10 ⁻⁶]	0	1.52	0.25	0.353

RF system requirements

- Maximum gradient is key
- 5 Hz repetition rate with low duty cycle
- RF stations distributed around the RCS ring
- Slight tuning during acceleration to track orbit length change

Outline

Introduction

- Longitudinal beam dynamics requirements
 - Distributed RF system
 - Path length change
- RF system overview
 - Frequency choice and RF structure
 - Beam loading and RF feedback
- Summary

-1-1-

Why super-conducting?

- Large RF voltage during long pulses
- Energy efficient acceleration technology
- Standing wave for mode to accommodate counter-rotating bunches
- High accelerating gradient per RF structure length

RCS RF system choices

Large scale superconducting RF systems

Frequency	Accelerator	Remark
352 MHz	LEP	Moderate gradient, CW
400 MHz	LHC, FCC	Moderate gradient, CW
650 MHz	PIP-II	Alternative options also for
800 MHz	ERL, (FCC)	μRCS
1.3 GHz	TESLA, ILC, FELs (XFEL)	Wide-spread technology with decades of experience
1.5 GHz	JLab-CEBAF	

 \rightarrow Largest gradients presently achieved at 1.3 GHz

1.3 GHz structures for muon acceleration?

Well studied, industrialized design (A. Yamamoto, <u>IMCC22</u>)

→ Achieved gradient during suitable pulse length: > 30 MV/m

 \rightarrow Gradient assumption for muon RCS:

Achieved (conservative)30 MV/mOptimistic scenario45 MV/m

Pulsed of operation, duty cycle

- Repetition rate of RCS chain identical to ILC: 5 Hz
- Minimum beam pulse length for RF system?

Ejection energy, *E*_{ej} [TeV]

Circumference, $2\pi R$ [km]

Acceleration time, beam pulse length, τ_{acc} [ms]

 \rightarrow Similar, pulsed regime

	RCS1	RCS2	RCS3	RCS4
	0.31	0.75	1.5	5.0
	5.99	5.99	10.7	35
	0.34	1.1	2.4	6.4
HE INTER/		40 30 20 10	Bea	am se
1		0	400 800 Time [μsec	1200 1600]

RF frequency sweep

 $\Delta f \approx 3 \text{ kHz}$

- RCS2 most demanding, RCS3 and RCS4 more relaxed
 - Well-defined RF frequency sweep needed in ~1 ms, from injection to extraction

Piezo

- $\Delta f/f = \Delta I/(2\pi R) \approx 1.52 \cdot 10^{-6} \rightarrow \Delta f \approx 2 \text{ kHz} \rightarrow d\Delta f/dt \approx 10 \text{ MHz/s}$
- \rightarrow Controlled RF frequency sweep during 'beam pulse'
- \rightarrow Present tuning systems only for Lorentz force detuning compensation
- Reported tuning ranges for ILC-style cavities
- W. Cichalewski et al., ICALEPCS2015: $\Delta f \approx 1.2 \text{ kHz}$
- Y. Pischalnikov, <u>ILCX2021-ILC</u>:

Pulsed of operation, duty cycle

Outline

Introduction

Longitudinal beam dynamics requirements

- Distributed RF system
- Path length change

RF system overview

- Frequency choice and RF structure
- Beam loading and RF feedback
- Summary

- - - -

Beam loading considerations

Only one high-intensity bunch (of each type) accelerated in RCS

	ILC	RCS1 (and RCS2)
Number of bunches, $n_{\rm b}$	1312	1 each μ^+ and μ^-
Bunch spacing, τ_{bs}	554 ns	$T_{\rm rev} = 20 \ \mu s$
Bunch intensity, N _b	2 · 10 ¹⁰ p/b	2.7 (2.5) · 10 ¹² p/b
Average beam current, I _b	5.8 mA	2 × ~20 mA

- Average beam current more than three times (2×) above ILC
- Very strong transient beam loading

Higher-order mode power and damping

ollaboration

- HOMs loss factors from ABCI (<u>ABCI</u> file from S.-A. Udongwo)
- 1.3 GHz structure in RCS1

- \rightarrow 1.5 V/pC corresponds to almost $P_{HOM} = 8$ kW during beam pulse of 0.34 ms (duty cycle: 0.17%)
- \rightarrow Millisecond RF acceleration in intermediate regime between CW and pulsed RF
- \rightarrow Requires more detailed (thermal) study for 10 kW **HOM class couplers**

External loading and feedback requirements

- Steady-state detuning to minimize reflected power (reactive beam loading compensation) → $\Delta f_{\text{RF}}/f_{\text{RF}} \approx 5 \cdot 10^{-7} \rightarrow \Delta f_{\text{RF}} \approx \sim 2 \times 0.32 \text{ kHz}$
- Optimal external quality factor $Q_{ ext{ext,optimal}}$

$$_{\rm ot} \simeq \frac{V}{(R/Q)I_{\rm RF}\sin\phi_{\rm S}}$$

J. Tückmantel, <u>CERN-ATS-Note-2011-002 TECH</u>

- → Suggests optimal external quality factor Q_{ext,opt} ≈ 1...2 · 10⁶ (within 1...10 · 10⁶ of tunable fundamental power coupler for ILC)
- \rightarrow Too high (5-6 turns filling time) for efficient feedback $\rightarrow Q_{L} \approx O(10^{5})$

Outline

Introduction

Longitudinal beam dynamics requirements

- Distributed RF system
- Path length change

RF system overview

- Frequency choice and RF structure
- Beam loading and RF feedback
- Summary

Beam feedback considerations

- Only 10% budget for longitudinal emittance growth (5 GeV → 5 TeV)

 → Critical at injection:
 Phase/energy mismatch
 → Dipole oscillations
 → Quadrupole oscillations
- Filamentation extremely fast (few turns) due to $Q_{\rm S} = f_{\rm S}/f_{\rm rev} > 1$
- **1. Beam phase loop**

2. Quadrupole damper

Gated per bunch, extremely fast?

- → Requires turn-by-turn modulation of RF phase and voltage
- → Impact of counter-rotating bunches to be checked

Outline

Introduction

Longitudinal beam dynamics requirements

- Distributed RF system
- Path length change

RF system overview

- Frequency choice and RF structure
- Beam loading and RF feedback

Summary

Summary

- Muon RCS: single μ^+ , μ^- bunches accelerated to 5 TeV
 - Largest RF gradient key to muon survival
 - Important HOM power due to high bunch intensity, strong beam-loading
 - RF frequency sweep to compensate path length change (hybrid RCS)
- Present RCS chain design based on 1.3 GHz (ILC)
 - Modular, distributed RF system: ~30 RF stations (700 9-cell cavities, RCS1) ideally equidistant → infrastructure
 - Pulsed regime: 0.34 ms (RCS1) to 6.4 ms (RCS4)
 - **Cavity tuning** with piezo tuners?
 - Feasibility of HOM couplers?

Summary of RF requirements

Parameter	RCS1	RCS2	RCS3	RCS4
Frequency, f _{RF}	1.3 GHz			
Beam pulse length, τ_{acc}	0.34	1.1	2.4	6.4
RF voltage per turn	20.9 GV	11.2 GV	16.1 GV	90 GV
Frequency sweep width, Δf	n/a	2 kHz	0.32 kHz	0.46 kHz
Gradient, $V_{\rm RF}/I$	30 MV/m (conservative), 45 MV/m (pushed)			
Beam current, I _{DC}	2 × 22 mA	$2 \times 20 \text{ mA}$	$2 \times 10 \text{ mA}$	$2 \times 3 \text{ mA}$
Power to the beam	2×320 MW	2×160 MW	2×120 MW	2×190 MW
HOM power (beam pulse)	~10 kW	~10 kW	~5 kW	~1.5 kW

and the second se

-1-2

Thank you for your attention!

Transient power and feedback considerations

- With 2 × 20 mA beam current, power to beam ~2 × 430 kW
- Beam induced voltage at f_{RF} about 2 x 1.7 MV during bunch passage
- Conventional direct feedback (e.g., loop delay, τ_d ≈ 700 ns in LHC) too slow
 - Correction would be applied after bunch
- 1-turn delay feedback μ⁺/μ⁻ gating
 - Counter-rotating beams not to meet in cavity

P. Baudrenghien, T. Mastoridis, PRAB 20, 011004 (2017)

- Muon RCS advantage: only one bunch per beam and few turns
- → Explore cycle-by-cycle adaptive compensation

Open questions for discussion

• Frequency choice of 1.3 GHz?

- What is the baseline gradient for the RCS design? 31.5 MV/m? 45 MV/m?
- Impact of distributed RF system? Power for cryogenics? Cost in terms of AC power?
- Impact of μ⁺/μ⁻-bunches in opposite directions?
- Beam current too large for ILC-type cavities? Limitations of fundamental power coupler?
- Controlled frequency sweep in combination with Lorentz force detuning?

Summary of RF requirements

Parameter	Value	Remark
Frequency, <i>f</i> _{RF}	1.3 GHz	
Tuning range (piezo), Δf	2.2 kHz	Sweep for acceleration, hybrid RCS2/3/4
Gradient, $V_{\rm RF}/I$	30 MV/m	
Beam pulse length, τ_{acc}	0.34/1.1/ 2.4/6.4 ms	RCS1/2/3/4
Beam current, I _{DC}	$2 \times 20 \text{ mA}$	
Power to the beam (max., RCS1)	$2 \times 250 \text{ MW}$	~2 \times 430 kW/cavity

34

 \rightarrow F. Boattini, Magnet cycling considerations, Thursday \rightarrow F. Batsch, RF cycling considerations, Thursday

 \rightarrow Significantly more RF voltage than any other RCS \rightarrow Much fewer turns

	RCS1	LEP2	FCC-ee
Circumference, $2\pi R$ [m]	5990	26658	91106
Energy factor, $E_{\rm ej}/E_{\rm inj}$	5	4.8	n/a
Repetition rate, f _{rep} [Hz]	5 (asym.)	Slow (min.)	n/a
Magnetic ramp	Linearized	n/a	n/a
Number of turns	17	few 10 ⁸	10 ⁸
Max. RF voltage, V _{RF} [GV]	21	3.6	11.3
Energy gain per turn, ∆E [GeV]	14.8	3.49	10

 \rightarrow Even more RF voltage than any other circular collider

 \rightarrow Much fewer turns

Chronogram – bunch structure

- ILC: 1312 moderate intensity bunches spaced by 554 ns
- μRCS: Two very high-intensity counter-rotating bunches