Fermilab Science

High Gradient and Q-factor SRF Performance at 1.3 GHz and 650 MHz

- **Daniel Bafia**
- IMCC'23
- June 21st, 2023

Introduction to Bulk Nb SRF Cavities

- Nb SRF cavities: most efficient engineered EM resonators ever created
- Mature, proven technology
 - LCLS-II + HE
 - EXFEL

650 MHz – 9 GHz

Performance governed by microscopic properties within the first ~100 nm from inner surface

Surface Engineering of Nb SRF Cavities

Goal of SRF research: tailor surface properties *via* chemical and baking treatments to yield high Q_0 and E_{acc}

- Higher $Q \rightarrow$ lower cryogenic costs
- Higher gradient → less \$\$\$ OR higher energy

Outline

Introduction to SRF

- Fundamental R&D Toward Improving Bulk Nb SRF Cavity Performance
 - Key Materials Science findings
 - Optimizing 1.3 GHz cavity performance
 - Applying findings to 650 MHz cavities
 - Optimizing EP for 650 MHz
- Key Technological Advancements Towards High Gradients
 - +50 MV/m recipe: cold EP + 2-step low-temp bake
 - Extending gradients further with the traveling wave design
 - Plasma processing
- Conclusions

Coupling RF and Material Studies to Improve SRF Cavities

- Material science is critical to understand sources of improved SRF cavity performance
- Identified O as a key impurity in enabling ^a high gradients and Q in cavities

Can we tune cavity performance by tailoring O impurity profile?

Tuning Cavity Performance with Oxygen Impurities

- Single cavity subjected to sequential baking and RF testing to study the evolution of cavity performance
- O diffusion: ability to tune between high Q₀ or high gradient!

D. Bafia et al, Proceedings of SRF'2021, THPTEV016

Optimizing Cavity Q₀ By Tailoring O Impurity Profile

• Maximizing Q₀ requires minimizing R_{BCS} $Q_0 \propto \frac{1}{2}$

$$r_0 \propto \overline{R_{BCS} + R_0}$$

 Gradually introduced more oxygen into the RF surface of cavities and tracked R_{BCS} evolution

- 100+ cavity RF tests

Optimizing Cavity Gradient by Tailoring O Impurity Profile

- Gradually introduced more oxygen into the RF surface of cavities and tracked quench
- Found a peak in guench field when oxygen diffuses 46 nm!

Application of Quench Peak Findings to 650 MHz Cavities

- Subjected a 650 MHz cavity to a surface treatment which introduced O to a depth of 46 nm
- From 1.3 GHz studies expect high quench field:
 - We achieved get 44 MV/m!
- Quench optimization studies on 1.3 GHz are applicable to 650 MHz
- Non-optimal electropolishing likely limiting performance

Improving 650 MHz Performance Further via Optimized EP

V. Chouhan, to be presented at SRF'23

- Proper electropolishing (EP) is critical in enabling excellent cavity performance
 - Smooth surface, minimal uptake of H
- Developed a novel cathode and optimal EP parameters for 5-cell 650 MHz cavities for PIP-II

Optimized design and parameters yields unprecedented performance in high- β 650 MHz EP'd cavities!

Outline

- Introduction to SRF
- Fundamental R&D Toward Improving Bulk Nb SRF Cavity Performance
 - Key Materials Science findings
 - Optimizing 1.3 GHz cavity performance
 - Applying findings to 650 MHz cavities
 - Optimizing EP for 650 MHz
- Key Technological Advancements Towards High Gradients
 - +50 MV/m recipe: cold EP + 2-step low-temp bake
 - Extending gradients further with the traveling wave design
 - Plasma processing
- Conclusions

New Cold EP + 2-Step Low-Temp Bake Enabling 50 MV/m

Grassellino et al. https://arxiv.org/abs/1806.09824

Transferred recipe to 9-cell cavities as part of ILC Cost Reduction effort

Average E_{acc} = 40.4 MV/m!

Extending Gradients Further with the Traveling Wave Design

- Standing wave Nb cavities limited E_{acc} by H_{sh}
- Alternative: Niobium traveling wave structure
 - − RF power returned *via* feedback Nb waveguide
 → Lowers peak fields in cavity
 - Possible to achieve E_{acc} > 70 MV/m!!

Current Status:

- 1-cell: designed, treated (BCP), and tested
 Achieved 26 MV/m in RF testing
- 3-cell: designed and treated (BCP)
 - Tuning just completed
 - RF testing scheduled for this summer
 - TW operation demonstrated at room temp!
- 0.5 m structure currently being designed in collaboration w/ Cornell

*Euclid Techlabs DOE SBIR DE-FG02-06ER84462 and DE-SC0006300.

Plasma Processing Applied to LCLS-II-HE vCM

B. Giaccone, et al. arXiv:2201.09776 (2022) S. Posen *et al.* PRAB **25**, 042001 (2022)

Vacuum cart -Downstream

RF system

 RF test after plasma processing demonstrated that:

- vCM performance is preserved
- Plasma processing did not introduce any contamination: vCM still FE-free

Plasma processing procedure for 1.3GHz CMs is fully validated

Plasma processing can also eliminate multipacting:

 Possible to address both FE and MP in situ in CMs → decreased CM testing and commissioning time, increased reliability during machine operation

Cavity	Multipacting Quenches			
	Before plasma		After Plasma	
	1^{st} cooldown	2^{nc}	ⁱ cooldown	
1	/		157	0
2	135		106	205
3	41		44	53
4	68		3	0
5	10		16	0
6	46		7	69
7	68		33	82
8	128		108	0

Conclusions & Future Directions

 Bulk Nb SRF cavities are a mature, ready-to-go technology for use in a muon collider

Recent advancements in R&D push the limits of cavity performance

- Impurity tailoring enables tuning cavity performance for high gradient or high Q
- Electropolishing optimization shown to extend gradient reach
- Cold EP + 2-step baking yields gradients above 50 MV/m
- Initial traveling wave cavity demonstrate promising results, opening the door to > 70 MV/m
- Plasma processing enables *in situ* mitigation of FE and MPing in CMs

Thank you for your attention!

