

Design of SRF cavities for muon accelerators status and plans – MuCol Task 6.1

IMCC Annual Meeting 2023, Orsay 21 June 2023 Ursula van Rienen

Funded by the European Union under Grant Agreement n. 101094300

MuCol Design Study

Fig. 5: Proposed organisation of MuCol

MuCol WP6 | Task 6.1 Meeting 15 May 2023 | Ursula van Rienen

Illustration adapted from MuCol proposal

Task 6.1: Baseline concept of the RF system for acceleration to the High Energy Complex (HEC)

 Provide a preliminary design concept for the SRF cavities of the Rapid-Cycling Synchrotrons (RCS) of the HEC

Fig. 2: Layout of the Muon Collider complex as elaborated by the MAP

Universität Rostock

MuCol WP6 Task Leader Meeting | Task 6.1 | Ursula van Rienen

Illustration from MuCol proposal

Rostock

raditio et Innovatio

Task 6.1: Baseline concept of the RF system for acceleration to the High Energy Complex (HEC)

From Antoine Chancé's presentation:

Chain of rapid cycling synchrotrons, counter-rotating m+/m- beams → 60 GeV → 314 GeV → 750 GeV → 1.5 TeV → 5 TeV

MuCol WP6 Task Leader Meeting | Task 6.1 | Ursula van Rienen

Task 6.1: Baseline concept of the RF system for acceleration to the High Energy Complex (HEC)

Fig. 6: Schematic diagram of interactions among workpackages

Illustration from MuCol proposal

MuCol WP6 Task Leader Meeting | Task 6.1 | Ursula van Rienen

Task 6.1: Baseline concept of the RF system for acceleration to the High Energy Complex (HEC)

- The short muon lifetime requires the highest possible acceleration rate to reach energy gains of O(10 GeV) per turn
- Shall be provided by very high-voltage SRF cavities
- Thus, task 6.1 includes determining a suitable cavity technology, i.e. type, shape, material, main RF frequency
- During cavity optimisation, we need to consider the strong transient beam loading and wakefield effects
- In cooperation with WP5: Full set of parameters for the fundamental mode and Higher Order Modes' suppression

aditio et Innovatio

Task 6.1 Contributions

- MuCol participants contributing:
 - CEA Beam loading & FPC study
 - CERN Beam dynamics simulations for the RCSs
 - INFN LASA Frequency sweep and HOMs
 - UROS* SRF cavity design, incl. HOM couplers so far: *Funded by EU with 12 person months; additionally: Gentner-funded PhD student started 06/23

Open for further contributions from other IMCC members!

Rostock

Fraditio et Innovatio

Low-loss cavity geometries from the literature

UROS Summary, Sosoho A. Udongwo, cf. talk today

- Several low-loss cavities from the literature [1] were analysed
- There was no significant difference in the fundamental mode (FM) and higher-order mode (HOM) quantities of interest
- NLSF cavity was selected for further analysis; TESLA [2] and ERL [3] cavity geometries were also analysed for comparison

[1] N. Juntong, R.M. Jones, High-gradient SRF Cavity with minimized surface E.M. fields and superior bandwidth for the ILC, Proceedings of SRF2009, Berlin, Germany. <u>https://accelconf.web.cern.ch/SRF2009/papers/thpp0024.pdf</u>

[2] B. Aune et al., Superconducting TESLA cavities, Physical Review Special Topics - Accelerators and Beams, Volume 3, 092001 (2000).

[3] V. Shemelin, Optimal choice of cell geometry for a multicell superconducting cavity, Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE), Ithaca, New York 14853, USA, 11 November 2009. <u>https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.12.114701</u>

Analysed cavity geometry profiles

Study of the NLSF cavity considering different numbers of cells and operating frequencies UROS Summary, Sosoho A. Udongwo, cf. talk today

 HOM power for a 9-cell cavity (NLSF, TESLA, ERL-MA) is calculated to be about 10 kW

	NLSF	ERL-MA	TESLA
$\overline{N_{\mathrm{cav}}}$	671	671	671
$P_{\mathrm{stat}}[\mathrm{kW}]$	4.99	4.99	4.99
$P_{\rm dyn}[m kW]$	60.19	72.72	70.65
$P_{\rm HOM}/{\rm cav}(\sigma = 13.0 \text{ mm})[\text{kW}]$	10.67	9.88	9.04
$P_{\rm HOM}(\sigma = 13.0 \text{ mm})[\text{kW}]$	7162.29	6626.27	6066.59

RCS Stage 1

Universität

Rostock

Beam current - 20.38 mA

raditio et Innovatio

Bunch length – 13 mm

From left to right: Bar plots of normalised loss and kick factors, and HOM power per cavity

From left to right: Bar plots of the normalised number of cavities, static power loss, dynamic power loss, HOM power loss and total power loss

Rostoc

Study of the NLSF cavity considering different numbers of cells and operating frequencies UROS Summary, Sosoho A. Udongwo, cf. talk today

- Reducing the number of cells does not substantially reduce the HOM power, but operating at a lower frequency does
- This, however, comes at the cost of increasing the dynamic power loss

aditio et Innovatio

From left to right: Bar plots of normalised loss and kick factors, and HOM power per cavity

From left to right: Bar plots of the normalised number of cavities, static power loss, dynamic power loss, HOM power loss and total power loss

Rostock

HOM impedance outlook for NLSF, ERL-MA and **TESLA** cavity geometries

UROS Summary, Sosoho A. Udingwo, cf. talk today

- Trapped dipole mode at 106 around 2500 MHz, but
- Transverse impedance of dipole modes below the threshold value for HOM-damped cavities

aditio et Innovatio

Rostock

Longitudinal dynamics – HOM power losses

CERN Summary, Fabian Batsch, cf. talk today

The results from S.-A. Udongwo are compared with:

- Calculation of HOM power in TESLA / ILC 1.3 GHz cavity in macro-particle tracking simulations (using the BLonD code):
- Obtain power loss through loss factor k_{||} from approximated wake potentials containing the information about all HOM:
- $k_{\parallel} = \int \lambda(t) W_{\parallel,SR}(t) dt$, with $W_{\parallel,SR}$ short-range wake potential

1e6

• $P_{HOM} = k_{\parallel} * Q_2 / T_B$, with bunch charge Q, b. spacing $T_B = T_{rev}$

Rostock

Longitudinal dynamics – HOM power losses CERN Summary, Fabian Batsch, cf. talk today

 Further comparison with <u>ABCI</u> simulations that use the approximated loss factor for short Gaussian bunches:

- $k_{\parallel} = |R/Q| \omega_r/2$ ($\omega_r/4$ for Linac norm)
- \rightarrow HOM loss factor is summed up over all HOMs: $k_{\parallel} = \sum k_{\parallel,i}$

				2 welded	2 demount.	2 demount.
				couplers on	couplers on	couplers on
MODE		FREQ.	R/Q	asymmetric	asymmetric	symmetric
				cavity	cavity	cavity
				Qext	Qext	Qext
		[MHz]	[Ω]	[1.0E+3]	[1.0E+3]	[1.0E+3]
TM 011	1	2379,6	0,00	350,0	1150	1600
	2	2384,4	0,17	72,4	360	460
	3	2392,3	0,65	49,5	140	220
	4	2402,0	0,65	84,0	68	110
	5	2414,4	2,05	32,0	70	97
	6	2427.1	2.93	29,1	81	59
	7	2438,7	6,93	20,4	66	4 9
	8	2448,4	67,04	27,4	58	51
	9	2454,1	79,50	58,6	110	100

From

"Higher order mode coupler for TESLA", J. Sekutowisz

See here (TESLA) & paper (ILC LL)

Rostock

HOM power losses CERN Summary, Fabian Batsch, cf. talk today

 From BLonD, for the induced voltage of 1.1 MV/m per cavity, we obtain up to 10 kW per bunch and cavity

(Bunch population 2.54x10¹², $T_{rev} = 20 \ \mu s \rightarrow I = 20.4 \text{ mA}$)

HOM power losses **CERN Summary, Fabian Batsch, cf. talk today**

From HOMs from <u>ABCI</u>: (ABCI file from S.-A. Udongwo): 1.5 V/pC results in 7.9 kW \rightarrow Consistent with BLonD

- \rightarrow Large values up to 10 kW HOM power per bunch within t_{acc}
- \rightarrow Bunch crossings in cavities must be avoided
- \rightarrow High-capacity HOM coupler development required
- \rightarrow Discussion of which is the corresponding CW power

loss

 \rightarrow Further benchmarking with CST to be continued

Summary

- MuCol Task 6.1 just started its work
- First results on impedances, HOM power, etc., achieved for various elliptical multicell cavity profiles
- Main contributions so far by a few young researchers
- A PhD candidate just joined

aditio et Innovatio

- About monthly meetings https://indico.cern.ch/category/15522/
- More manpower is highly welcome to join and support in achieving our aims

MInternational UON Collider Collaboration

Thank you for your attention