# **Monte Carlo generator development**















**CLUSTER OF EXCELLENCE QUANTUM UNIVERSE** 









Why are event generators important?

Why are event generators non-trivial?



![](_page_1_Picture_4.jpeg)

J. R. Reuter, DESY

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

![](_page_1_Picture_9.jpeg)

![](_page_1_Picture_10.jpeg)

Why are event generators important?

Why are event generators non-trivial?

![](_page_2_Figure_3.jpeg)

![](_page_2_Picture_4.jpeg)

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Because they contain *all* our knowledge of particle physics!

![](_page_2_Picture_8.jpeg)

![](_page_2_Picture_9.jpeg)

Why are event generators important?

Why are event generators non-trivial?

![](_page_3_Figure_3.jpeg)

J. R. Reuter, DESY

![](_page_3_Picture_4.jpeg)

Because all our forward simulation chain depends on them! Because they contain *all* our knowledge of particle physics!

![](_page_3_Picture_7.jpeg)

![](_page_3_Picture_8.jpeg)

Why are event generators important?

Why are event generators non-trivial?

![](_page_4_Figure_3.jpeg)

J. R. Reuter, DESY

![](_page_4_Picture_4.jpeg)

Because all our forward simulation chain depends on them! Because they contain *all* our knowledge of particle physics!

IMCC Annual Meeting, IJLab, Orsay, 20.6.2023

![](_page_4_Picture_7.jpeg)

Why are event generators important?

Why are event generators non-trivial?

![](_page_5_Figure_3.jpeg)

J. R. Reuter, DESY

![](_page_5_Picture_4.jpeg)

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

![](_page_5_Picture_8.jpeg)

![](_page_5_Picture_9.jpeg)

Why are event generators important?

Why are event generators non-trivial?

![](_page_6_Figure_3.jpeg)

Because all our forward simulation chain depends on them!

![](_page_6_Picture_7.jpeg)

Why are event generators important?

Why are event generators non-trivial?

![](_page_7_Figure_3.jpeg)

Because all our forward simulation chain depends on them!

![](_page_7_Picture_7.jpeg)

Why are event generators important?

Why are event generators non-trivial?

![](_page_8_Figure_3.jpeg)

Because all our forward simulation chain depends on them!

![](_page_8_Picture_7.jpeg)

Why are event generators important?

Why are event generators non-trivial?

![](_page_9_Figure_3.jpeg)

Because all our forward simulation chain depends on them!

![](_page_9_Picture_7.jpeg)

Why are event generators important?

Why are event generators non-trivial?

![](_page_10_Figure_3.jpeg)

Because all our forward simulation chain depends on them!

![](_page_10_Picture_7.jpeg)

![](_page_11_Figure_3.jpeg)

![](_page_12_Figure_3.jpeg)

![](_page_13_Figure_3.jpeg)

## **Monte Carlo generators for muon colliders**

- Ş What is different to MC event generators for the LHC?
- Ş What is different to MC event generators for (high-energy) electron-positron colliders?
- Ş Where do we stand and what is still needed?

- Beam simulation
- Initial-state structure: PDFs, collinear vs. soft resummation, cross section predictions ... 2.
- Hard process (SM): NLO SM automation , NNLO automation (?) 3.
- Hard process (BSM): any new (crazy) model? SMEFT? tweaks? which order? 4.
- 5. Exclusive processes (I = QED): photons, QED showers, matching (?)
- Exclusive processes (II = QCD): jets, QCD/interleaved/EW showers, fragmentation (!) 6.
- Efficiency, speed, sustainability [left out for time reasons]

![](_page_14_Picture_11.jpeg)

J. R. Reuter, DESY

![](_page_14_Picture_14.jpeg)

![](_page_14_Picture_15.jpeg)

![](_page_15_Figure_1.jpeg)

J. R. Reuter, DESY

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

- Micro-scale bunches create beam structure/-strahlung Ş
- Ş Mostly Gaussian shape for circular machines, but not fully
- Ş Machine simulation with tools like GuineaPig(++), CAIN
- Ş Has to be folded into realistic MC simulations
- Gaussian shape with specific spreads 1.
- Parameterized (delta peak  $\oplus$  power law) 2.
- Avail.:  $[\checkmark]$ Generator for 2D histogrammed fit 3.

![](_page_16_Picture_8.jpeg)

J. R. Reuter, DESY

![](_page_16_Figure_10.jpeg)

![](_page_16_Figure_11.jpeg)

![](_page_16_Figure_12.jpeg)

![](_page_16_Picture_14.jpeg)

![](_page_16_Picture_15.jpeg)

- Ş Micro-scale bunches create beam structure/-strahlung
- Ş Mostly Gaussian shape for circular machines, but not fully
- Ş Machine simulation with tools like GuineaPig(++), CAIN
- Ş Has to be folded into realistic MC simulations
- Gaussian shape with specific spreads 1.
- 2. Parameterized (delta peak  $\oplus$  power law)
- Generator for 2D histogrammed fit 3.

![](_page_17_Picture_8.jpeg)

J. R. Reuter, DESY

![](_page_17_Figure_10.jpeg)

Avail.: 🗸 Avail.: (✓) Avail.:  $[\checkmark]$ 

![](_page_17_Figure_13.jpeg)

Dalena/Esbjerg/Schulte [LCWS 2011]

![](_page_17_Picture_16.jpeg)

- Ş Micro-scale bunches create beam structure/-strahlung
- Ş Mostly Gaussian shape for circular machines, but not fully
- Ş Machine simulation with tools like GuineaPig(++), CAIN
- Ş Has to be folded into realistic MC simulations
- Gaussian shape with specific spreads 1.
- Parameterized (delta peak  $\oplus$  power law) 2.
- Generator for 2D histogrammed fit 3.
- Pro (1.): Easy implementation, covers main features
- Ş Gaussian approximative, exceeds nominal collider energy Con (1.):
- Ş Relatively easy implementation Pro (2.):
- Ş Con (2.): Delta peak behaves badly in MC, beams maybe not factorizable/simple power law
- Pro (3.): most exact simulation, generator mode avoids artifacts in tails
- Ş Con (3.): only available (yet) in dedicated tools like LumiLinker and CIRCE2

![](_page_18_Picture_14.jpeg)

J. R. Reuter, DESY

![](_page_18_Figure_16.jpeg)

 $D_{B_1B_2}(x_1, x_2) \neq D_{B_1}(x_1) \cdot D_{B_2}(x_2)$  $D_{B_1B_2}(x_1, x_2) \neq x_1^{\alpha_1}(1 - x_1)^{\beta_1} x_2^{\alpha_2}(1 - x_2)^{\beta_2}$ 

![](_page_18_Picture_23.jpeg)

![](_page_18_Picture_24.jpeg)

## Beam simulations (technial details)

### CIRCE2 algorithm T. Ohl, 1996, 2005

← Talk by Thorsten Ohl 06/2023: https://indico.cern.ch/event/1266492/

- Adapt 2D factorized variable width histogram to steep part of distribution
- Smooth correlated fluctuations with moderate Gaussian filter [suppresses artifacts from limited GuineaPig statistics
- Smooth continuum/boundary bins separately [avoid artificial beam energy spread]

![](_page_19_Figure_6.jpeg)

(171.306 GuineaPig events in 10.000 bins)

![](_page_19_Picture_8.jpeg)

J. R. Reuter, DESY

![](_page_19_Figure_12.jpeg)

![](_page_19_Picture_14.jpeg)

## **Beam simulations (technial details)**

### CIRCE2 algorithm T. Ohl, 1996, 2005

Talk by Thorsten Ohl 06/2023: https://indico.cern.ch/event/1266492/

- Adapt 2D factorized variable width histogram to steep part of distribution
- Smooth correlated fluctuations with moderate Gaussian filter [suppresses artifacts from limited GuineaPig statistics
- Smooth continuum/boundary bins separately [avoid artificial beam energy spread]

![](_page_20_Figure_6.jpeg)

![](_page_20_Picture_7.jpeg)

J. R. Reuter, DESY

![](_page_20_Figure_11.jpeg)

![](_page_20_Picture_13.jpeg)

## **Beam simulations (technial details)**

### CIRCE2 algorithm T. Ohl, 1996, 2005

Talk by Thorsten Ohl 06/2023: https://indico.cern.ch/event/1266492/

- Adapt 2D factorized variable width histogram to steep part of distribution
- Smooth correlated fluctuations with moderate Gaussian filter [suppresses artifacts from limited GuineaPig statistics
- Smooth continuum/boundary bins separately [avoid artificial beam energy spread]

![](_page_21_Figure_6.jpeg)

![](_page_21_Picture_7.jpeg)

J. R. Reuter, DESY

![](_page_21_Picture_11.jpeg)

### 1. Run Guinea-Pig++ with

do\_lumi=7;num\_lumi=100000000;num\_lumi\_eg=100000000;num\_lumi\_gg=100000000;

to produce lumi. [eg] [eg].out with  $(E_1, E_2)$  pairs.

[Large event numbers, as Guinea-Pig++ will produce only a small fraction!]

### 2. Run circe2\_tool.opt with steering file

```
{ file="ilc500/beams.circe"
                                                # to be loaded by WHIZARD
   design="ILC" roots=500 bins=100 scale=250 # E in [0,1]
    { pid/1=electron pid/2=positron pol=0
                                                # unpolarized e-/e+
      events="ilc500/lumi.ee.out" columns=2
                                                # <= Guinea-Pig</pre>
      lumi = 1564.763360
                                                # <= Guinea-Pig</pre>
      iterations = 10
                                                # adapting bins
                                                # Gaussian filter 5 bins
      smooth = 5 [0, 1) [0, 1)
      smooth = 5 [1] [0,1) smooth = 5 [0,1) [1] } }
```

to produce correlated beam description

**3.** Run WHIZARD with SINDARIN input:

```
beams = e1, E1 => circe2
$circe2_file = "ilc500.circe"
$circe2_design = "ILC"
?circe_polarized = false
```

3 simulation options

- I. Unpolarized simulation with unpol. spectra
- 2. Pol. simulation: unpol. spectra + pol. beams
- 3. Polarized spectrum with helicity luminosities

![](_page_21_Figure_26.jpeg)

# **Initial State Radiation – Lepton PDFs**

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

J. R. Reuter, DESY

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

# **QED PDFs — QED Initial State Resummation**

Different factorization schemes: focus on collinear lo

### YFS (Yennie-Frautschi-Suura), cf. e.g. 2203.10948

- Universal soft exponentiation factor, provides  $n_{\gamma}$  exclusive resolved photons with (almost) exact kinematics
- Exponentiation at amplitude level (CEEX) oder squared ME level (EEX)
- Can be systematically improved at fixed-order level by higher-order corrections

### Ş Collinear factorization: universal lepton QED PDFs, LL: $(\alpha L)^k$ , NLL: $\alpha (\alpha L)^{k-1}$

$$d\sigma_{kl}(p_k, p_l) = \sum_{ij=e^+, e^-, \gamma} \int dz_+ dz_- \Gamma_{i/k}(z_+, \mu^2, m^2) \Gamma_{j/l}(z_-, \mu^2, m^2) \\ \times d\hat{\sigma}_{ij}(z_+ p_k, z_- p_l, \mu^2) + \mathcal{O}\left(\left(\frac{m^2}{s}\right)^p\right)$$

$$\mathbb{P}_{S} = \begin{pmatrix} P_{\Sigma\Sigma} & P_{\Sigma\gamma} \\ P_{\gamma\Sigma} & P_{\gamma\gamma} \end{pmatrix}, \qquad \text{Integrable power-} \\ P_{NS} = P_{e^{\pm}e^{\pm}} - P_{e^{\pm}e^{\mp}} \equiv P_{ee}^{V} - P_{e\bar{e}}^{V}. \qquad \text{ePI}$$

J. R. Reuter, DESY

ogs, 
$$\log \frac{Q^2}{m_{\mu}^2}$$
, vs. soft logs,  $\log \frac{Q^2}{\overline{E_{\gamma}^2}}$ , cf. 2203.12557  
 $d\sigma = \sum_{n_{\gamma}}^{\infty} \frac{\exp[Y_{res.}]}{n_{\gamma}!} \prod_{j=1}^{n_{\gamma}} \left[ d\text{LIPS}_j^{\gamma} S_{res.}(k_j) \right] \left[ \sigma_0 + \text{correction} \right]$ 

• Implemented in LEP legacy MCs (BHLUMI/BHWIDE, KORAL(W/Z), KKMC-ee, YFS(WW/ZZ), also: Sherpa, w.i.p.: Whizard

![](_page_23_Figure_17.jpeg)

![](_page_23_Picture_19.jpeg)

![](_page_23_Picture_20.jpeg)

![](_page_23_Picture_21.jpeg)

# **QED PDFs — Collinear Factorization**

- Collinear resummation LO/LL Gribov/Lipatov, 1972; Kuraev/Fadin, 1985; Skrzypek/Jadach, 1992; Cacciari/Deandrea/Montagna/Nicrosini, 1992 NLO QED PDFs, collinear evolution @ NLL Frixione, 1909.0388; Bertone/Cacciari/Frixione/Stagnitto, 1911.12040 + 2207.03265 Inclusive in all initial-state photons Gives most precise normalization of total cross section Numerical stability differs in different QED renormalization schemes, DIS vs. MS **Also:** fast interpolation (CTEQ-like) grids available Implementations available in MG5 and Whizard Different levels of precision possible: NLL+NLO, LL+NLO, LL+NLO, LL+LO **D** Different names in literature: electron structure functions, ISR structure functions
- "Photon PDF" (a.k.a. EPA, Weizsäcker-Williams)  $\Gamma_{\gamma}$ , peaked at small z
- Very well known from ILC/CLIC simulations: "virtual photon"-induced processes
- At very high energies lepton colliders become  $\gamma\gamma$  colliders (like LHC is gg)

![](_page_24_Picture_5.jpeg)

J. R. Reuter, DESY

![](_page_24_Figure_7.jpeg)

Han/Ma/Xie, 2007.14300

![](_page_24_Figure_9.jpeg)

![](_page_24_Picture_11.jpeg)

![](_page_25_Picture_1.jpeg)

- Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844
- Ancient name (from SSC times!): EWA ("Effective W approximation)
- **G** Fully inclusive in collinear/forward/beam direction
- □ Also: fast interpolation (CTEQ-like) grids available

![](_page_25_Picture_6.jpeg)

J. R. Reuter, DESY

## **EW PDFs — EW Collinear Factorization**

![](_page_25_Picture_12.jpeg)

![](_page_25_Picture_13.jpeg)

![](_page_26_Picture_1.jpeg)

- Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844
- Ancient name (from SSC times!): EWA ("Effective W approximation)
- **G** Fully inclusive in collinear/forward/beam direction
- □ Also: fast interpolation (CTEQ-like) grids available

![](_page_26_Picture_6.jpeg)

J. R. Reuter, DESY

# **EW PDFs — EW Collinear Factorization**

![](_page_26_Figure_9.jpeg)

![](_page_26_Picture_13.jpeg)

![](_page_26_Picture_14.jpeg)

![](_page_27_Picture_1.jpeg)

- Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844
- Ancient name (from SSC times!): EWA ("Effective W approximation)
- **G** Fully inclusive in collinear/forward/beam direction
- □ Also: fast interpolation (CTEQ-like) grids available

![](_page_27_Picture_6.jpeg)

J. R. Reuter, DESY

# **EW PDFs — EW Collinear Factorization**

![](_page_27_Figure_9.jpeg)

![](_page_27_Figure_11.jpeg)

IMCC Annual Meeting, IJLab, Orsay, 20.6.2023

![](_page_27_Picture_13.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_6.jpeg)

- $\Box \gamma \gamma$  part (quasi-) identical to collinear QED lepton PDFs
- Factorization has coherent interference  $\gamma\gamma/\gamma Z/ZZ$
- Trivial on the PDF infrastructure side, complication for ME generation
- Work in progress in MG5 and Whizard

DESY.

□ Has to be accompanied by EW fragmentation functions (event selection!)

![](_page_28_Picture_12.jpeg)

# **EW PDFs — EW Collinear Factorization**

IMCC Annual Meeting, IJLab, Orsay, 20.6.2023

![](_page_28_Picture_17.jpeg)

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_6.jpeg)

![](_page_29_Picture_12.jpeg)

# **EW PDFs — EW Collinear Factorization**

![](_page_29_Picture_15.jpeg)

![](_page_29_Picture_16.jpeg)

## SM precision in hard processes — Loops and Legs

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

J. R. Reuter, DESY

Getty Villa, Pacific Palisades, Etruscan, 525 BC

![](_page_30_Picture_6.jpeg)

![](_page_30_Picture_7.jpeg)

![](_page_31_Figure_1.jpeg)

- Caveats and fine-prints

![](_page_31_Figure_8.jpeg)

|                          | MCSANCee[37]                        |                                 | WHIZARD+RECOLA                      |                                 |                      |                               |                                   |
|--------------------------|-------------------------------------|---------------------------------|-------------------------------------|---------------------------------|----------------------|-------------------------------|-----------------------------------|
| $\sqrt{s}  [\text{GeV}]$ | $\sigma_{ m LO}^{ m tot}~[{ m fb}]$ | $\sigma_{ m NLO}^{ m tot}$ [fb] | $\sigma_{ m LO}^{ m tot}~[{ m fb}]$ | $\sigma_{ m NLO}^{ m tot}$ [fb] | $\delta_{ m EW}$ [%] | $\sigma^{ m sig} ( m LO/NLO)$ |                                   |
| 250                      | 225.59(1)                           | 206.77(1)                       | 225.60(1)                           | 207.0(1)                        | -8.25                | 0.4/2.1                       |                                   |
| 500                      | 53.74(1)                            | 62.42(1)                        | 53.74(3)                            | 62.41(2)                        | +16.14               | 0.2/0.3                       | Die Dreedt Dheltheesie DECV 0000  |
| 1000                     | 12.05(1)                            | 14.56(1)                        | 12.0549(6)                          | 14.57(1)                        | +20.84               | 0.5/0.5                       | Pla Breat, Pha thesis, DESY, 2022 |

J. R. Reuter, DESY

## The "Exclusive" Frontier — fN(N)LO, Automation in MCs

Fixed-order N(N)LO, resummation and matching in MCs Determination of efficiencies and systematic uncertainties Signal and background samples at full SM QFT interference level Need  $e^+e^- \rightarrow 2f$ , 3f, 4f, 5f, 6f, [7-10f] @ NLO QCD  $\oplus EW$  (arbitrary cuts, fully differential)

|         |                                   | NLO                    | QCD                          |          |                  | NLC                            | ) EW                     |
|---------|-----------------------------------|------------------------|------------------------------|----------|------------------|--------------------------------|--------------------------|
|         | $\mu^+\mu^-  ightarrow t ar{t} H$ |                        |                              |          | $\mu^{-}$        | $^+\mu^-  ightarrow t ar{t} H$ |                          |
| -       | $\sqrt{s}$ [GeV]                  | $\sigma^{LO}[{ m fb}]$ | $\sigma^{NLO}[{ m fb}]$      | Κ        | $\sqrt{s}$ [GeV] | $\sigma^{LO}[{ m fb}]$         | $\sigma^{NLO}[{\rm fb}]$ |
| -       | 500                               | 0.272                  | $0.435^{+3.82\%}_{-3.13\%}$  | 1.601    | 500              | 0.271                          | 0.091                    |
| _       | 800                               | 2.339                  | $2.319^{+0.01\%}_{-0.09\%}$  | 0.991    | 800              | 2.339                          | 1.533                    |
| _       | 1000                              | 2.008                  | $1.893^{+0.49\%}_{-0.62\%}$  | 0.942    | 1000             | 2.008                          | 1.402                    |
|         | 1400                              | 1.323                  | $1.192^{+0.81\%}_{-1.08\%}$  | 0.900    | 1400             | 1.323                          | 0.967                    |
| _       | 1000                              | 2.009                  | $1.894^{+0.45\%}_{-0.65\%}$  | 0.942    | 1000             | 2.008                          | 1.322                    |
|         | 3000                              | 0.406                  | $0.342^{+1.54\%}_{-1.84\%}$  | 0.842    | 3000             | 0.407                          | 0.296                    |
| _       | 6000                              | 0.128                  | $0.102^{+2.22\%}_{-2.55\%}$  | 0.794    | 6000             | 0.128                          | 0.086                    |
|         | 10000                             | 0.053                  | $0.040^{+3.01\%}_{-3.11\%}$  | 0.759    | 10000            | 0.053                          | 0.027                    |
|         | 14000                             | 0.030                  | $0.0221^{+3.33\%}_{-3.13\%}$ | 0.735    | 14000            | 0.030                          | 0.017                    |
| 1.1 1.2 | Fran                              | cesco U                | cci, DESY sı                 | ummer st | udent rep        | oort, 202                      | 22                       |

![](_page_31_Picture_17.jpeg)

![](_page_31_Figure_18.jpeg)

![](_page_31_Picture_19.jpeg)

![](_page_31_Picture_20.jpeg)

![](_page_31_Picture_21.jpeg)

## **[N(N)LO Automation in MC — Some technical details**]

- Ş MC NLO implementation relies on 2 building blocks: Subtraction (Catani-Seymour or Frixione/Kunszt/Soper)
- Ş also: resonance-aware FKS subtraction cf. Ježo/Nason, 1509.09071; Chokoufé, 2017
- Ş Automatic differential fixed-order results (histogrammed distributions) in MCs
- Ş Photon isolation, photon recombination, light-, b-, c-jet selection
- Ş Covers also loop-induced processes ("LO", virtual-squared)

![](_page_32_Picture_6.jpeg)

J. R. Reuter, DESY

![](_page_32_Figure_8.jpeg)

IMCC Annual Meeting, IJLab, Orsay, 20.6.2023

![](_page_32_Picture_10.jpeg)

## **[N(N)LO Automation in MC — Some technical details**]

- Ş MC NLO implementation relies on 2 building blocks: Subtraction (Catani-Seymour or Frixione/Kunszt/Soper)
- Ş also: resonance-aware FKS subtraction cf. Ježo/Nason, 1509.09071; Chokoufé, 2017
- Ş Automatic differential fixed-order results (histogrammed distributions) in MCs
- Ş Photon isolation, photon recombination, light-, b-, c-jet selection
- Ş Covers also loop-induced processes ("LO", virtual-squared)

Two major bottlenecks

Virtual integrals with many mass scales / off-shell legs Abreu ea., Badger ea., Baglio ea., Brønnum-Hansen ea.

**I**R pole treatment / subtraction

![](_page_33_Picture_10.jpeg)

J. R. Reuter, DESY

- CS, FKS, NS, Stripper, qT/sub-jettiness etc.

![](_page_33_Figure_14.jpeg)

IMCC Annual Meeting, IJLab, Orsay, 20.6.2023

![](_page_33_Picture_16.jpeg)

## **[N(N)LO Automation in MC — Some technical details**]

- Ş MC NLO implementation relies on 2 building blocks: Subtraction (Catani-Seymour or Frixione/Kunszt/Soper)
- Ş also: resonance-aware FKS subtraction cf. Ježo/Nason, 1509.09071; Chokoufé, 2017
- Ş Automatic differential fixed-order results (histogrammed distributions) in MCs
- Ş Photon isolation, photon recombination, light-, b-, c-jet selection
- Ş Covers also loop-induced processes ("LO", virtual-squared)

Two major bottlenecks

Virtual integrals with many mass scales / off-shell legs Abreu ea., Badger ea., Baglio ea., Brønnum-Hansen ea.

**I**R pole treatment / subtraction

- FKS soft/eikonal subtraction sufficient for low-energy machines NNLO QED (massive, virtuals pending): McMule Signer ea. [Whizard] Baby steps to NNLO automation: Griffin Chen/Freitas, 2023 for NNLO EW need for full-fledged soft+collinear NNLO subtraction

![](_page_34_Picture_11.jpeg)

![](_page_34_Picture_12.jpeg)

![](_page_34_Picture_13.jpeg)

J. R. Reuter, DESY

![](_page_34_Figure_15.jpeg)

- CS, FKS, NS, Stripper, qT/sub-jettiness etc.

IMCC Annual Meeting, IJLab, Orsay, 20.6.2023

![](_page_34_Picture_19.jpeg)

# **SM EW Corrections to Multi-Bosons**

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_2.jpeg)

J. R. Reuter, DESY

### arXiv: 2208.09438

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mu^+\mu^- \to X, \sqrt{s} = 3 \text{ TeV}$ | $\sigma_{ m LO}^{ m incl}~[{ m fb}]$ | $\sigma_{ m NLO}^{ m incl}~[{ m fb}]$ | $\delta_{ m EW}$ [% |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------------|---------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                      |                                       |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $W^+W^-$                                     | $4.6591(2) \cdot 10^2$               | $4.847(7) \cdot 10^2$                 | +4.0(2)             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ZZ                                           | $2.5988(1)\cdot 10^{1}$              | $2.656(2)\cdot 10^{1}$                | +2.19(6)            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HZ                                           | $1.3719(1)\cdot 10^{0}$              | $1.3512(5)\cdot 10^{0}$               | -1.51(4)            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HH                                           | $1.60216(7)\cdot 10^{-7}$            | $5.66(1)\cdot 10^{-7}$ *              |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $W^+W^-Z$                                    | $3.330(2)\cdot 10^{1}$               | $2.568(8)\cdot 10^{1}$                | -22.9(2)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $W^+W^-H$                                    | $1.1253(5)\cdot 10^{0}$              | $0.895(2)\cdot 10^{0}$                | -20.5(2)            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ZZZ                                          | $3.598(2) \cdot 10^{-1}$             | $2.68(1)\cdot 10^{-1}$                | -25.5(3)            |
| $\begin{array}{c cccccc} HHZ & 3.277(1)\cdot 10^{-2} & 2.451(5)\cdot 10^{-2} & -25.2(1)\\ HHH & 2.9699(6)\cdot 10^{-8} & 0.86(7)\cdot 10^{-8} & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline $ | HZZ                                          | $8.199(4) \cdot 10^{-2}$             | $6.60(3)\cdot 10^{-2}$                | -19.6(3)            |
| $\begin{array}{c ccccc} HHH & 2.9699(6) \cdot 10^{-8} & 0.86(7) \cdot 10^{-8} * \\ \hline W^+W^-W^+W^- & 1.484(1) \cdot 10^0 & 0.993(6) \cdot 10^0 & -33.1(4) \\ W^+W^-ZZ & 1.209(1) \cdot 10^0 & 0.699(7) \cdot 10^0 & -42.2(6) \\ W^+W^-HZ & 8.754(8) \cdot 10^{-2} & 6.05(4) \cdot 10^{-2} & -30.9(5) \\ W^+W^-HH & 1.058(1) \cdot 10^{-2} & 0.655(5) \cdot 10^{-2} & -38.1(4) \\ ZZZZ & 3.114(2) \cdot 10^{-3} & 1.799(7) \cdot 10^{-3} & -42.2(2) \\ HZZZ & 2.693(2) \cdot 10^{-3} & 1.766(6) \cdot 10^{-3} & -34.4(2) \\ HHZZ & 9.828(7) \cdot 10^{-4} & 6.24(2) \cdot 10^{-4} & -36.5(2) \\ HHHZ & 1.568(1) \cdot 10^{-4} & 1.165(4) \cdot 10^{-4} & -25.7(2) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HHZ                                          | $3.277(1) \cdot 10^{-2}$             | $2.451(5) \cdot 10^{-2}$              | -25.2(1)            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HHH                                          | $2.9699(6) \cdot 10^{-8}$            | $0.86(7)\cdot 10^{-8}$ *              |                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $W^+W^-W^+W^-$                               | $1.484(1) \cdot 10^0$                | $0.993(6)\cdot 10^{0}$                | -33.1(4)            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $W^+W^-ZZ$                                   | $1.209(1)\cdot 10^{0}$               | $0.699(7) \cdot 10^{0}$               | -42.2(6)            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $W^+W^-HZ$                                   | $8.754(8) \cdot 10^{-2}$             | $6.05(4)\cdot 10^{-2}$                | -30.9(5)            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $W^+W^-HH$                                   | $1.058(1)\cdot 10^{-2}$              | $0.655(5)\cdot 10^{-2}$               | -38.1(4)            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ZZZZ                                         | $3.114(2) \cdot 10^{-3}$             | $1.799(7) \cdot 10^{-3}$              | -42.2(2)            |
| $HHZZ$ $9.828(7) \cdot 10^{-4}$ $6.24(2) \cdot 10^{-4}$ $-36.5(2)$ $HHHZ$ $1.568(1) \cdot 10^{-4}$ $1.165(4) \cdot 10^{-4}$ $-25.7(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HZZZ                                         | $2.693(2)\cdot 10^{-3}$              | $1.766(6) \cdot 10^{-3}$              | -34.4(2)            |
| HHHZ $1.568(1) \cdot 10^{-4}$ $1.165(4) \cdot 10^{-4}$ $-25.7(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HHZZ                                         | $9.828(7) \cdot 10^{-4}$             | $6.24(2)\cdot 10^{-4}$                | -36.5(2)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HHHZ                                         | $1.568(1) \cdot 10^{-4}$             | $1.165(4) \cdot 10^{-4}$              | -25.7(2)            |

EW corrections for massive initial state muons

Massive eikonals need special treatment at high energies

IMCC Annual Meeting, IJLab, Orsay, 20.6.2023

11 / 18

6.2023

## Validation of the QED & Sudakov regime

| 0.5 = HZ                                             |                                                           | 0.5                                 |                          |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------|-------------------------------------|--------------------------|--|--|--|
| 0.4                                                  |                                                           | 0.4                                 |                          |  |  |  |
| 0.3 O.3                                              |                                                           | 0.3                                 |                          |  |  |  |
| 0.2                                                  |                                                           | 0.2                                 |                          |  |  |  |
| $\delta_{QED} =$                                     | $= \sigma_{ m NLO,QED}^{ m incl}/\sigma_{ m L}^{ m incl}$ | $O^{\text{ncl}} - 1$                |                          |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                           |                                     |                          |  |  |  |
| $\mu^+\mu^- \to X, \sqrt{s} = 10 \text{ TeV}$        | $\sigma_{ m LO}^{ m incl}~[{ m fb}]$                      | $\sigma_{ m LO+ISR}^{ m incl}$ [fb] | $\delta_{ m ISR} \ [\%]$ |  |  |  |
| $W^+W^-$                                             | $5.8820(2)\cdot 10^{1}$                                   | $7.295(7) \cdot 10^{1}$             | +24.0(1)                 |  |  |  |
| ZZ                                                   | $3.2730(4)\cdot 10^{0}$                                   | $4.119(4) \cdot 10^{0}$             | +25.8(1)                 |  |  |  |
| HZ                                                   | $1.22929(8) \cdot 10^{-1}$                                | $1.8278(5)\cdot 10^{-1}$            | +48.69(4)                |  |  |  |
| $W^+W^-Z$                                            | $9.609(5)\cdot 10^{0}$                                    | $10.367(8)\cdot 10^{0}$             | +7.9(1)                  |  |  |  |
| $W^+W^-H$                                            | $2.1263(9)\cdot 10^{-1}$                                  | $2.410(2)\cdot 10^{-1}$             | +13.3(1)                 |  |  |  |
| ZZZ                                                  | $8.565(4)\cdot 10^{-2}$                                   | $9.431(7)\cdot 10^{-2}$             | +10.1(1)                 |  |  |  |
| HZZ                                                  | $1.4631(6) \cdot 10^{-2}$                                 | $1.677(1) \cdot 10^{-2}$            | +14.62(8)                |  |  |  |
| HHZ                                                  | $6.083(2)\cdot 10^{-3}$                                   | $6.916(3)\cdot 10^{-3}$             | +13.68(6)                |  |  |  |

### arXiv: 2208.09438

![](_page_36_Picture_3.jpeg)

J. R. Reuter, DESY

![](_page_36_Picture_6.jpeg)

## Validation of the QED & Sudakov regime

| $0.5 \begin{bmatrix} HZ \\ ZZ \end{bmatrix}$  |                                                       | 0.5                                 |                       |
|-----------------------------------------------|-------------------------------------------------------|-------------------------------------|-----------------------|
| 0.4                                           |                                                       | 0.4                                 |                       |
| G 0.3                                         |                                                       | 0.3                                 | See EW                |
| 0.2                                           |                                                       | 0.2                                 | Sele Rele             |
| δοπη =                                        | $= \sigma^{\text{incl}} - \sigma^{\text{incl}}$       | ncl_1                               | IR q                  |
| 0.1 $OQED$                                    | ♥NLO,QED/♥L                                           |                                     | Soth Both             |
| 2 4 6                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <u>14</u> 16                        |                       |
| $\mu^+\mu^- \to X, \sqrt{s} = 10 \text{ TeV}$ | $\sigma_{ m LO}^{ m incl}~[{ m fb}]$                  | $\sigma^{ m incl}_{ m LO+ISR}$ [fb] | $\delta_{ m ISR}$ [%] |
| $W^+W^-$                                      | $5.8820(2) \cdot 10^{1}$                              | $7.295(7) \cdot 10^{1}$             | +24.0(1)              |
| ZZ                                            | $3.2730(4)\cdot 10^{0}$                               | $4.119(4) \cdot 10^{0}$             | +25.8(1)              |
| HZ                                            | $1.22929(8) \cdot 10^{-1}$                            | $1.8278(5) \cdot 10^{-1}$           | +48.69(4)             |
| $W^+W^-Z$                                     | $9.609(5) \cdot 10^0$                                 | $10.367(8)\cdot 10^{0}$             | +7.9(1)               |
| $W^+W^-H$                                     | $2.1263(9)\cdot 10^{-1}$                              | $2.410(2)\cdot 10^{-1}$             | +13.3(1)              |
| ZZZ                                           | $8.565(4) \cdot 10^{-2}$                              | $9.431(7) \cdot 10^{-2}$            | +10.1(1)              |
| HZZ                                           | $1.4631(6) \cdot 10^{-2}$                             | $1.677(1) \cdot 10^{-2}$            | +14.62(8)             |
| HHZ                                           | $ig  6.083(2) \cdot 10^{-3}$                          | $  6.916(3) \cdot 10^{-3}$          | +13.68(6)             |

### arXiv: 2208.09438

![](_page_37_Picture_3.jpeg)

J. R. Reuter, DESY

$$L(s, M_W^2) = \frac{\alpha}{4\pi} \log^2 \frac{s}{M_W^2} \stackrel{10 \text{ TeV}}{\sim} 6\%$$
$$l(s, M_W^2) = \frac{\alpha}{4\pi} \log \frac{s}{M_W^2} \stackrel{10 \text{ TeV}}{\sim} 0.6\%$$

corrections at high energies dominated by EW double & single Sudakov logs evant in kinematic region of Sudakov limit  $r_{kl} = (p_k + p_l)^2 \sim s \gg M_W^2$ juasi-divergencies of virtual corrections not cancelled by real EW radiation h initial and final states no EW "color" singlets

![](_page_37_Figure_7.jpeg)

← talks by Davide Pagani, Alfredo Glioti

![](_page_37_Figure_10.jpeg)

![](_page_37_Figure_11.jpeg)

![](_page_37_Picture_12.jpeg)

# **Differential results**

Experimentally motivated photon veto in hard radiation:

Higgs Transverse Momentum

![](_page_38_Figure_3.jpeg)

exclusive events w/ matching to QED/weak showers, resummation, More tasks for even more realistic predictions: off-shell processes, separate VBF from VBS

![](_page_38_Picture_5.jpeg)

J. R. Reuter, DESY

 $E_{\gamma} < 0.7 \cdot \sqrt{s}/2$ 

### arXiv: 2208.09438

### Higgs rapidity

### Higgs scattering angle

![](_page_38_Picture_12.jpeg)

![](_page_38_Picture_13.jpeg)

# **Parton Showers and Hadronization**

![](_page_39_Picture_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_39_Picture_3.jpeg)

### NLO partons

![](_page_39_Figure_5.jpeg)

![](_page_39_Picture_6.jpeg)

J. R. Reuter, DESY

![](_page_39_Picture_8.jpeg)

![](_page_39_Picture_10.jpeg)

![](_page_39_Picture_11.jpeg)

![](_page_39_Picture_12.jpeg)

![](_page_40_Figure_0.jpeg)

# **Exclusive photons**

QED ISR [+FSR], matching

J. Kalinowski/W. Kotlarski/P. Sopicki/A.F. Zarnecki, 2020

J. R. Reuter, DESY

![](_page_40_Picture_10.jpeg)

Explicit photon from fix-order (LO/NLO/NNLO) matrix element (best description) "Shower-recoil approach": generate  $p_{\perp}$  according to  $\frac{\alpha}{\pi} \cdot \log \frac{p_{\perp}^2}{m^2}$ 

Boost according to the generated  $p_{\perp}$  (avail. for for ISR, EPA or ISR+EPA) Algorithm applied recursively (similar to massive NLO EW ISR PS construction) Recursive algorithm resembles a photon shower with *n* exclusive photons

![](_page_40_Picture_14.jpeg)

![](_page_41_Figure_0.jpeg)

J. R. Reuter, DESY

![](_page_41_Picture_3.jpeg)

# **Exclusive photons**

![](_page_41_Picture_10.jpeg)

## (Resonance) Matching to shower / hadronization

![](_page_42_Figure_5.jpeg)

![](_page_42_Picture_6.jpeg)

J. R. Reuter, DESY

![](_page_42_Picture_12.jpeg)

## LO + NLO QCD (+EW?) matching and fragmentation

A lot of development for parton showers, towards NLL and next-to-leading color

(DIRE, ALARIC, Deductor, HERWIG, PanScales, VINCIA, PYTHIA)

- Matching between NLO real emission from hard ME and parton shower (PS)
- Different MCs have different schemes: MC@NLO, POWHEG, [NNLO+N<sup>3</sup>LO schemes]
- G Special cases: Massive/massless emitters, back-to-pack kinematics, running  $\alpha_s$
- Real partitioning of phase space into singular and finite regions
- Resonance-aware subtraction: Intermediate resonances handled
- At the moment mostly: NLO QCD; straightforward (?) QED/EW generalization
- Apply specific NLO events

$$\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_{\rm rad} R(\Phi_{n+1}) d\Phi_{\rm rad} R(\Phi_{n+1}) d\Phi_{\rm rad} R(\Phi_{n+1}) + \int d\Phi_{\rm rad} R(\Phi_{n+1}) d\Phi_{\rm rad} R(\Phi_{n+1}) d\Phi_{\rm rad} R(\Phi_{n+1}) + \int d\Phi_{\rm rad} R(\Phi_{n+1}) d\Phi_{\rm rad} R(\Phi_{n+1}) d\Phi_{\rm rad} R(\Phi_{n+1}) d\Phi_{\rm rad} R(\Phi_{n+1}) + \int d\Phi_{\rm rad} R(\Phi_{n+1}) d\Phi_{\rm ra$$

• Modified Sudakov form factor:

$$\Delta_R^{\rm NLO}(k_T) = \exp\left[-\int d\Phi_{\rm rad} \frac{R(\Phi_{n+1})}{B(\Phi_n)}\right]$$

- Higgs/Top/EW Factory will provide pure sample of hadron data
- Need for much improved fragmentation formalism

![](_page_43_Picture_15.jpeg)

J. R. Reuter, DESY

![](_page_43_Figure_17.jpeg)

IMCC Annual Meeting, IJLab, Orsay, 20.6.2023

![](_page_43_Picture_19.jpeg)

# **BSM Modelling in Simulation**

![](_page_44_Picture_1.jpeg)

![](_page_44_Picture_2.jpeg)

J. R. Reuter, DESY

![](_page_44_Picture_5.jpeg)

![](_page_44_Picture_6.jpeg)

# **BSM Models: UFO magic**

- BSM models available from Lagrangian level tools (LanHEP, SARAH, FeynRules)
- Transferred to MC generator via UFO format: v1 1108.2040 v2:2304.09883
- Allows for all Lagrangian-based BSM models
- Spin 0, 1/2, 1, 3/2, 2 supported (some 3/2, 2 features missing in some MC)
- Majorana fermions and fermion-number violating vertices
- 5-, 6-, 7-, 8-, ... point vertices (optimization for code generation pending)
- Arbitrary Lorentz structures in vertices
- Keeping track of the order of insertions
- Customized propators
- Exotic colored objects (sextets, decuplets, epsilon structures)
- (S)LHA-style input files from spectrum generators to MC generators (scans!)
- Automated calculations of widths (UFO side vs. MC generator side)
- Long-lived particles, displaced vertices, oscillations in decays (not all MCs yet)
- Lots of bug reports and constructive feedback from many different users
- LO fully supported, NLO (QCD) available on UFO side, but not all MCs

![](_page_45_Picture_16.jpeg)

### J. R. Reuter, DESY

![](_page_45_Figure_18.jpeg)

MuC example for SMEFT/HEFT UFO, from: T. Han et al. arXiv:2108.05362

![](_page_45_Figure_21.jpeg)

![](_page_45_Picture_22.jpeg)

![](_page_45_Picture_23.jpeg)

# **Conclusions & Outlook**

- Monte-Carlo event generators implement *all* necessary SM and BSM physics
- Fixed-order NLO QCD+EW for SM and NLO QCD BSM under control (mostly)
- Attempts to go to NNLO for QED (with certain assumptions)
- LL/NLL  $\mu$ PDF in collinear factorization vs. YFS soft/eikonal factorization
- Matching prescriptions for exclusive photon radiation G
- Important (but still in infancy) work in QED + EW parton showers with matching
- Different focus in different generators: no a priori best strategy for QED (and EW) corrections
- More studies, test cases and benchmarks needed: also 2nd and 3rd implementations important! G
- Also need for dedicated MCs, e.g. for luminosity measurement ( $\mu\mu \rightarrow \mu\mu, \gamma\gamma$ )
- Not to forget: QCD showers + factorization [Higgs factories will boost this to new precision!]

![](_page_46_Picture_11.jpeg)

DESY.

![](_page_46_Picture_12.jpeg)

![](_page_46_Picture_13.jpeg)

![](_page_46_Picture_15.jpeg)

![](_page_46_Picture_16.jpeg)

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

J. R. Reuter, DESY

![](_page_47_Picture_3.jpeg)

![](_page_47_Picture_5.jpeg)

![](_page_47_Picture_6.jpeg)

# Monte Carlo Efficiency / Speed Up

![](_page_48_Figure_1.jpeg)

### GPU

Optimised for Many Parallel Tasks

![](_page_48_Figure_4.jpeg)

![](_page_48_Picture_5.jpeg)

J. R. Reuter, DESY

![](_page_48_Figure_7.jpeg)

![](_page_48_Picture_9.jpeg)

![](_page_48_Picture_10.jpeg)

## Flash through working algorithms

- Ş
- Ş MPI parallelization (using OpenMPI or MPICH)
- Ş Distributes workers over multiple cores
- Ş Grid adaption needs non-trivial communication
- Ş Speedups of 10 to 30, saturation at O(100) tasks
- Ş Load balancer / non-blocking communication
- Ş Offloading of MEs / parts of infrastructure code to GPU

![](_page_49_Picture_8.jpeg)

J. R. Reuter, DESY

Parallelization of integration: OMP multi-threading for different helicities / PS channels [can do also parallel event generation]

Braß/Kilian/JRR, 1811.09711

![](_page_49_Figure_12.jpeg)

![](_page_49_Picture_14.jpeg)

![](_page_49_Picture_15.jpeg)

## Flash through working algorithms

- Ş
- Ş MPI parallelization (using OpenMPI or MPICH)
- Ş Distributes workers over multiple cores
- Grid adaption needs non-trivial communication Ş
- ĕ Speedups of 10 to 30, saturation at O(100) tasks
- Ş Load balancer / non-blocking communication
- ĕ Offloading of MEs / parts of infrastructure code to GPU

- Ş
- Ş

J. R. Reuter, DESY

![](_page_50_Picture_13.jpeg)

Parallelization of integration: OMP multi-threading for different helicities / PS channels [can do also parallel event generation]

![](_page_50_Figure_15.jpeg)

### Offloading of MEs / parts of infrastructure code to GPU

Semi-automatized ME generation for GPU in MG5 and Whizard

Bottleneck: cache of GPU allows only for small-ish code chunks transferred

Still a lot of work needed to make it fully competitive

![](_page_50_Picture_21.jpeg)

![](_page_50_Figure_22.jpeg)

![](_page_50_Figure_23.jpeg)

![](_page_50_Picture_24.jpeg)

![](_page_50_Picture_25.jpeg)

![](_page_50_Picture_26.jpeg)

## Flash through working algorithms

- Ş
- Ş MPI parallelization (using OpenMPI or MPICH)
- Ş Distributes workers over multiple cores
- Grid adaption needs non-trivial communication Ş
- ĕ Speedups of 10 to 30, saturation at O(100) tasks
- Ş Load balancer / non-blocking communication
- Ş Offloading of MEs / parts of infrastructure code to GPU

### Very preliminary:

| Process                                                         | $t^{CPU}[s]$ | $t^{GPU}[s]$ |
|-----------------------------------------------------------------|--------------|--------------|
| $e^+e^- \rightarrow t\bar{t}$                                   | 0.98         | 4.28         |
| $e^+e^-  ightarrow bW^+ \overline{b}W^-$                        | 28.8         | 23.1         |
| $e^+e^- \rightarrow bW^+ \bar{b}W^- H$                          | 57.5         | 37.8         |
| $e^+e^-  ightarrow b \bar{b} \bar{ u}_e e^- \bar{ u}_\mu \mu^+$ | 154          | 124          |
| $e^+e^- \rightarrow 2j$                                         | 1.9          | 5.4          |
| $e^+e^-  ightarrow 3j$                                          | 45           | 65           |
| $e^+e^- \rightarrow 4j$                                         | 870          | 608          |
| $e^+e^- \rightarrow 5j$                                         | 4106         | 978          |
| pp  ightarrow jj                                                | 42           | 86           |
| $pp  ightarrow W^+W^-W^+W^-$                                    | 670          | 192          |

- Ş
- Ş

![](_page_51_Picture_14.jpeg)

J. R. Reuter, DESY

Parallelization of integration: OMP multi-threading for different helicities / PS channels [can do also parallel event generation]

![](_page_51_Figure_17.jpeg)

### Offloading of MEs / parts of infrastructure code to GPU

Semi-automatized ME generation for GPU in MG5 and Whizard

Bottleneck: cache of GPU allows only for small-ish code chunks transferred

Still a lot of work needed to make it fully competitive

![](_page_51_Picture_23.jpeg)

![](_page_51_Figure_24.jpeg)

![](_page_51_Figure_25.jpeg)

![](_page_51_Picture_26.jpeg)

![](_page_51_Picture_27.jpeg)

![](_page_51_Picture_28.jpeg)

## **Machine Learning: MC for integration and simulation**

- Ş Phase space integration / adaptation by Invertible Neural Networks (INNs) / normalizing flows
- Ş Define divergence-based loss function
- Ş Use of buffered losses and training

![](_page_52_Figure_5.jpeg)

### J. R. Reuter, DESY

Hoeche ea., 2001.10028, Heimel/ Winterhalder ea., 2212.06172

IMCC Annual Meeting, IJLab, Orsay, 20.6.2023

![](_page_52_Picture_11.jpeg)

![](_page_52_Picture_12.jpeg)