Standard Model PDFs for High-Energy Lepton Colliders

David Marzocca

Based on several previous works, most notably:
P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0001142, hep-ph/0505047],

Bauer, Webber [1703.08562, 1808.08831],
Chen, Han, Tweedie [1611.00788], Han, Ma, Xie [2007.14300, 2103.09844]
Azatov, Garosi, Greljo, DM, Salko, Trifinopoulos [2205.13552]

MuC is a VBC

(Costantini et al. 2005.10289]

MuC is a VBC

(Costantini et al, 2005.10289]

At muon colliders above $\sim 1-5 \mathrm{TeV}$,
the VBF process is always dominating over annihilation,
mostly collinear emission.

A high-energy Muon Collider is a Vector Boson Collider!

This is what allows a MuC to reach
exquisite precision in Higgs and EW physics.

The emission of collinear radiation (photon, W, Z, etc..) off a muon can be factorised from the hard scattering. [Ouomo, Veconh, wuter 1911.12366]

$$
p_{T}, m_{W} \ll E
$$

The emission of collinear radiation (photon, W, Z, etc..) off a muon can be factorised from the hard scattering. [Ouomo, Veconi, wuter 1911.12366]

$$
p_{T}, m_{W} \ll E
$$

This can be described in terms of generalised Parton Distribution Functions, like for proton colliders:

The emission of collinear radiation (photon, W, Z, etc..) off a muon can be factorised from the hard scattering. [Cuomo, Vecoch; wuter 1911.12366]

$$
p_{T}, m_{W} \ll E
$$

This can be described in terms of generalised Parton Distribution Functions, like for proton colliders:

$$
\sigma \mid \mu \bar{\mu} \rightarrow C+X)=\int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} \sum_{i j} f_{i}\left(x_{1}, Q\right) f_{j}\left(x_{2}, Q\right) \hat{\sigma}(i j \rightarrow C)(\hat{s})
$$

The case of collinear photon emission from an electron gives the Equilvalent Photon Approximation

$$
f_{\gamma}^{\mathrm{EPA}}(x)=\frac{\alpha}{2 \pi} P_{\gamma e}(x) \log \frac{E^{2}}{m_{e}^{2}}
$$

Fermi ('24) Weizsacker, Williams ('34) Landau, Lifschitz ('34)

LO Splitting function:

$$
P_{\gamma e}(x)=\frac{1+(1-x)^{2}}{x}
$$

At energies above the EW scale, similarly one can obtain the Effective Vector Approximation for EW gauge boson PDFs

Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard '84,
See also Borel et al. [1202.1904], Costantini et al. [2005.10289] Ruiz et al. [2111.02442], etc.

$$
f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right)=\frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x)\left(\log \frac{Q^{2}+(1-x) m_{W}^{2}}{m_{\mu}^{2}+(1-x) m_{W}^{2}}-\frac{Q^{2}}{Q^{2}+(1-x) m_{W}^{2}}\right)
$$

For $Q \gg m_{W}: f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right) \approx \frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x) \log \frac{Q^{2}}{m_{W}^{2}} \quad \begin{gathered}\text { This one is now implemented in } \\ \text { MadGraph5 aMC@NLO }\end{gathered}$

At energies above the EW scale, similarly one can obtain the Effective Vector Approximation for EW gauge boson PDFs

Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard '84,
See also Borel et al. [1202.1904], Costantini et al. [2005.10289] Ruiz et al. [2111.02442], etc.

$$
f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right)=\frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x)\left(\log \frac{Q^{2}+(1-x) m_{W}^{2}}{m_{\mu}^{2}+(1-x) m_{W}^{2}}-\frac{Q^{2}}{Q^{2}+(1-x) m_{W}^{2}}\right)
$$

For $Q \gg m_{W^{\prime}}: f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right) \approx \frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x) \log \frac{Q^{2}}{m_{W}^{2}} \quad \begin{gathered}\text { This one is now implemented in } \\ \text { MadGraph5 aMC@NLO }\end{gathered}$

Is this sufficient?

At energies above the EW scale, similarly one can obtain the Effective Vector Approximation for EW gauge boson PDFs

Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard '84,
See also Borel et al. [1202.1904], Costantini et al. [2005.10289] Ruiz et al. [2111.02442], etc.

$$
f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right)=\frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x)\left(\log \frac{Q^{2}+(1-x) m_{W}^{2}}{m_{\mu}^{2}+(1-x) m_{W}^{2}}-\frac{Q^{2}}{Q^{2}+(1-x) m_{W}^{2}}\right)
$$

For $Q \gg m_{W^{\prime}}: f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right) \approx \frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x) \log \frac{Q^{2}}{m_{W}^{2}} \quad \begin{gathered}\text { This one is now implemented in } \\ \text { MadGraph5 aMC@NLO }\end{gathered}$

Is this sufficient?

A. The expected relative corrections to the LO EVA result are proportional to (Sudakov double logs)

$$
\alpha_{2}\left(\log \frac{Q^{2}}{m_{w}^{2}}\right)^{2} \sim 1 \quad \text { for } Q \sim 1.5 \mathrm{TeV}
$$

For precise vector boson PDFs at the TeV scale it is important to re-sum the EW double logs.
Furthermore, if we are also interested in the QCD (gluon and quarks) PDFs, then resummation is required since α_{s} is large at small scales.

At energies above the EW scale, similarly one can obtain the Effective Vector Approximation for EW gauge boson PDFs

Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard '84,
See also Borel et al. [1202.1904], Costantini et al. [2005.10289] Ruiz et al. [2111.02442], etc.

$$
f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right)=\frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x)\left(\log \frac{Q^{2}+(1-x) m_{W}^{2}}{m_{\mu}^{2}+(1-x) m_{W}^{2}}-\frac{Q^{2}}{Q^{2}+(1-x) m_{W}^{2}}\right)
$$

For $Q \gg m_{W}: f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right) \approx \frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x) \log \frac{Q^{2}}{m_{W}^{2}} \quad \begin{gathered}\text { This one is now implemented in } \\ \text { MadGraph5 aMC@NLO }\end{gathered}$

Is this sufficient?

AT The expected relative corrections to the LO EVA result are proportional to (Sudakov double logs)

$$
\alpha_{2}\left(\log \frac{Q^{2}}{m_{w}^{2}}\right)^{2} \sim 1 \quad \text { for } Q \sim 1.5 \mathrm{TeV}
$$

For precise vector boson PDFs at the TeV scale it is important to re-sum the EW double logs.
Furthermore, if we are also interested in the QCD (gluon and quarks) PDFs, then resummation is required since α_{s} is large at small scales.

Mass effects remain relevant up to several TeV of energy. The $Q \gg m_{W}$ approx. is not sufficient for good precision.

Collinear Radiation and PDFs

Strongly ordered emission from multiple splittings can be resummed by solving the DGLAP equations

Collinear Radiation and PDFs

Strongly ordered emission from multiple splittings can be resummed by solving the DGLAP equations

Collinear Radiation and PDFs

Strongly ordered emission from multiple splittings can be resummed by solving the DGLAP equations

Collinear Radiation and PDFs

Strongly ordered emission from multiple splittings can be resummed by solving the DGLAP equations

Unlike for protons, since the muon is elementary this can be done from first principles.

The boundary condition is set by $f_{\mu}\left(x, m_{\mu}\right)=\delta(1-x)+O(\alpha), \quad f_{i \neq \mu}\left(x, m_{\mu}\right)=0+O(\alpha)$

DGLAP equations below EW scale

Below the EW scale only QED + QCD interactions are relevant.
QCD is introduced at the rho meson scale (we vary it for uncertainty),
and we add the threshold for the b quark.
Drees, Godbole [hep-ph/9403229], Schuler and Sjostrand [hep-ph/9503384,9601282]

DGLAP equations below EW scale

Below the EW scale only QED + QCD interactions are relevant.

QCD is introduced at the rho meson scale (we vary it for uncertainty), and we add the threshold for the b quark.

Drees, Godbole [hep-ph/9403229], Schuler and Sjostrand [hep-ph/9503384,9601282]

Uncertainty due to choice of Qacd

Changing the scale in the interval $Q_{Q C D}=[0.5-1] \mathrm{GeV}$
Relative variation in the PDFs, evaluated at the $\boldsymbol{m}_{\boldsymbol{W}}$ scale.

For leptons and the photon, relative variations are smaller than 10-5

Above the EW scale

All SM interactions and fields must be considered and
several new effects must be taken into account:

- PDFs become polarised, since EW interactions are chiral.

Bauer, Webber [1808.08831]

- At high energies EW Sudakov double logarithms are generated.

Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0001142, hep
oh/0505047], Bauer, Webber [1703.08562, 1808.08831]
Chen, Han, Tweedie [1611.00788], Han, Ma, Xie
[2103.09844], F. Garosi, D.M., S. Trifinopoulos [2303.16964]

- Neutral bosons interfere with each other: \mathbb{Z} / γ and h / \mathbb{Z}_{L} PDFs mix.
P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0505047]

Chen, Han, Tweedie [1611.00788]

- Mass effects of partons with EW masses (W, Z, h, t) become relevant and remain so even at multi-TeV scale.
- EW symmetry is broken. Another set of spliting functions, proportional to v^{2} instead of p^{2}, arise: ultra-collinear splitting functions. Chen, Han, Tweedie [1611.00788]

Implementation

We work in the mass eigenstate basis,

same numerical method used below the EW scale.

After identifying PDFs which are identical because of flavour symmetry, we remain with 42 independent PDFs:

$$
\begin{aligned}
& f_{e_{L}}=f_{\tau_{L}}, \quad f_{\bar{\ell}_{L}}=f_{\bar{e}_{L}}=f_{\bar{\mu}_{L}}=f_{\bar{\tau}_{L}}, \\
& f_{e_{R}}=f_{\tau_{R}}, \quad f_{\bar{\ell}_{R}}=f_{\bar{e}_{R}}=f_{\bar{\mu}_{R}}=f_{\bar{\tau}_{R}}, \\
& f_{v_{v}}=f_{v_{\tau}}, \quad f_{v_{v_{2}}}=f_{v_{v_{e}}}=f_{\nu_{\nu_{1}}}=f_{v_{v_{7}}}, \\
& f_{u_{u^{\prime}}}=f_{c_{L_{L}}}, \quad f_{u_{u_{L}}}=f_{c_{L_{L}}}, \quad f_{u_{R}}=f_{c_{R}}, \quad f_{u_{R}}=f_{\bar{c}_{R}}, \\
& f_{d_{L}}=f_{s_{L}}, \quad f_{\bar{L}_{L}}=f_{\bar{s}_{s_{L}}}, \quad f_{d_{R}}=f_{s_{s_{R}}}, f_{\bar{d}_{R}}=f_{\overline{s i n}_{R}} .
\end{aligned}
$$

Leptons	μ_{L}	μ_{R}	e_{L}	e_{R}	ν_{μ}	ν_{e}	$\bar{\ell}_{L}$	$\bar{\ell}_{R}$	$\bar{\nu}_{\ell}$
Quarks	u_{L}	d_{L}	u_{R}	d_{R}	t_{L}	t_{R}	b_{L}	b_{R}	+ h.c.
Gauge Bosons	$\gamma_{ \pm}$	$Z_{ \pm}$	$Z \gamma_{ \pm}$	$W_{ \pm}^{ \pm}$	$G_{ \pm}$				
Scalars	h	Z_{L}	$h Z_{L}$	$W_{L}^{ \pm}$					

Starting from $Q_{\mathrm{EW}}=m_{W}$, heavy states are added at the corresponding mass threshold.

Implementation

We work in the mass eigenstate basis,

 same numerical method used below the EW scale.After identifying PDFs which are identical because of flavour symmetry, we remain with 42 independent PDFs:

,	$f_{\bar{\tau}_{L}}=f_{\hat{e}_{L}}=f_{\overline{\bar{A}}_{L}}=f_{\bar{\tau}_{\bar{L}}}$,
$f_{e_{R}}=f_{T_{R}}$	$f_{\bar{t}_{R}}=f_{\bar{e}_{R}}=f_{\bar{\nu}_{R}}=f_{T_{R}}$,
$f_{\nu_{e}}=f_{\nu_{r}}$	$f_{\nu_{t}}=f_{\nu_{\nu_{e}}}=f_{\nu_{\nu_{\mu}}}=f_{\nu_{\nu_{\tau}}}$
$f_{u_{L}}=f_{c_{l}}$	$f_{\bar{u}_{L}}=f_{\varepsilon_{L}}, f_{u_{R}}=f_{c_{R}}$
$f_{d_{L}}=f_{s_{L}}$	$f_{\bar{L}_{L}}=f_{s_{L}}, f_{d_{L^{\prime}}}$

Leptons	μ_{L}	μ_{R}	e_{L}	e_{R}	ν_{μ}	ν_{e}	$\bar{\ell}_{L}$	$\bar{\ell}_{R}$	$\bar{\nu}_{\ell}$
Quarks	u_{L}	d_{L}	u_{R}	d_{R}	t_{L}	t_{R}	b_{L}	b_{R}	+ h.c.
Gauge Bosons	$\gamma_{ \pm}$	$Z_{ \pm}$	$Z \gamma_{ \pm}$	$W_{ \pm}^{ \pm}$	$G_{ \pm}$				
Scalars	h	Z_{L}	$h Z_{L}$	$W_{L}^{ \pm}$					

Starting from $Q_{\mathrm{EW}}=m_{W}$, heavy states are added at the corresponding mass threshold.
DGLAP equations: $Q^{2} \frac{d f_{B}\left(x, Q^{2}\right)}{d Q^{2}}=P_{B}^{v} f_{B}\left(x, Q^{2}\right)+\sum_{A, C} \frac{\alpha_{A B C}}{2 \pi} \widetilde{P}_{B A}^{C} \otimes f_{A}+\frac{v^{2}}{16 \pi^{2} Q^{2}} \sum_{A, C} \widetilde{U}_{B A}^{C} \otimes f_{A}$

$$
\begin{aligned}
& \widetilde{P}_{B A}^{C}\left(z, p_{T}^{2}\right)=\left(\frac{p_{T}^{2}}{\tilde{p}_{T}^{2}}\right)^{2} P_{B A}^{C}(z) \\
& \widetilde{p}_{T}^{2}=\bar{z}\left(m_{B}^{2}-p_{B}^{2}\right)=p_{T}^{2}+z m_{C}^{2}+z m_{B}^{2}-z z m_{A}^{2}+\mathcal{O}\left(\frac{m^{2}}{E^{2}}, \frac{p_{P}^{2}}{E^{2}}\right)
\end{aligned}
$$

Polarisation

Since EW interactions are chiral, PDFs become polarised.
E.g. in case of \boldsymbol{W} - PDF, coupled to $\boldsymbol{\mu}_{\boldsymbol{L}}$, the PDF for RH W's goes to zero for $x \rightarrow 1$ faster than LH W's, since $P_{V+f_{i}}(z)=(1-z) / z$ while $P_{V-f i}(z)=1 / z$.

Splitting functions depend on the helicity of the states, e.g.

$$
\begin{aligned}
& P_{V_{+} f_{L}}(z)=P_{V_{-} f_{R}}(z)=\frac{\bar{z}^{2}}{z}, \\
& P_{V_{-} f_{L}}(z)=P_{V_{+} f_{R}}(z)=\frac{1}{z}, \\
& P_{f_{L} V_{+}}(z)=P_{f_{R} V_{-}}(z)=\bar{z}^{2}, \\
& P_{f_{L} V_{-}}(z)=P_{f_{R} V_{+}}(z)=z^{2}, \quad \bar{z}=1-z
\end{aligned}
$$

Polarisation

Since EW interactions are chiral,

 PDFs become polarised.E.g. in case of \boldsymbol{W}-PDF, coupled to $\boldsymbol{\mu}_{\boldsymbol{L}}$, the PDF for RH W's goes to zero for $x \rightarrow 1$ faster than LH W's, since $P_{V+f i}(z)=(1-z) / z$ while $P_{V-f i}(z)=1 / z$.

Splitting functions depend on the helicity of the states, e.g.

$$
\begin{aligned}
& P_{V_{+} f_{L}}(z)=P_{V_{-} f_{R}}(z)=\frac{\bar{z}^{2}}{z}, \\
& P_{V_{-} f_{L}}(z)=P_{V_{+} f_{R}}(z)=\frac{1}{z}, \\
& P_{f_{L} V_{+}}(z)=P_{f_{R} V_{-}}(z)=\bar{z}^{2}, \\
& P_{f_{L} V_{-}}(z)=P_{f_{R} V_{+}}(z)=z^{2}, \quad \bar{z}=1-z
\end{aligned}
$$

Vectors polarisation: \mathbf{V}_{+} / V_{-}

Fermions polarisation: $\Psi_{\mathrm{L}} / \psi_{\mathrm{R}}$

EW Sudakov double logs from ISR

The Bloch-Nordsieck theorem is violated for non-abelian gauge theories
$\rightarrow \mathbb{R}$ divergencies are not cancelled in inclusive processes, since the initial state is EW non-singlet
\rightarrow We are often interested in exclusive processes, since we measure the $S U(2)$ charge (W vs Z, t vs b, etc...)
The EW Sudakov double logs arises as a non-cancellation of the \mathbb{R} soft divergences $(\mathbf{z} \rightarrow \mathbf{1})$
between real emission and virtual corrections.
P. Ciafaloni, Comelli [hep-ph/9809321], Fadin et al. [hep-ph/9910338], M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0001142, hep-ph/0103315]
see also Denner, Pozzorini [hep-ph/0010201], Pozzorini [hep-ph/0201077], Manohar [1409.1918], Pagani, Zaro [2110.03714],
Manohar, Waalewijn [1802.08687], Chen, Glioti, Rattazzi, Ricci, Wulzer [2202.10509]

EW Sudakov double logs from ISR

The Bloch-Nordsieck theorem is violated for non-abelian gauge theories
$\rightarrow \mathbb{R}$ divergencies are not cancelled in inclusive processes, since the initial state is EW non-singlet
\rightarrow We are often interested in exclusive processes, since we measure the SU(2) charge (Wvs Z, t vs b, etc...)
The EW Sudakov double logs arises as a non-cancellation of the \mathbb{R} soft divergences ($\mathbf{z} \boldsymbol{\rightarrow} \mathbf{1}$)
between real emission and virtual corrections.
P. Ciafaloni, Comelli [hep-ph/9809321], Fadin et al. [hep-ph/9910338], M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0001142, hep-ph/0103315] see also Denner, Pozzorini [hep-ph/0010201], Pozzorini [hep-ph/0201077], Manohar [1409.1918], Pagani, Zaro [2110.03714] Manohar, Waalewijn [1802.08687], Chen, Glioti, Rattazzi, Ricci, Wulzer [2202.10509]

Here I am interested in resumming the EW double logs related to the initial-state radiation.
At the leading-log level we can neglect soft radiation
Manohar, Waalewijn [1802.08687]

EW Sudakov double logs from ISR

The Bloch-Nordsieck theorem is violated for non-abelian gauge theories
$\rightarrow \mathbb{R}$ divergencies are not cancelled in inclusive processes, since the initial state is EW non-singlet
\rightarrow We are often interested in exclusive processes, since we measure the SU(2) charge (Wvs Z, t vs b, etc...)
The EW Sudakov double logs arises as a non-cancellation of the \mathbb{R} soft divergences ($\mathbf{z} \boldsymbol{\rightarrow} \mathbf{1}$)
between real emission and virtual corrections.
P. Ciafaloni, Comelli [hep-ph/9809321], Fadin et al. [hep-ph/9910338], M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0001142, hep-ph/0103315]
see also Denner, Pozzorini [hep-ph/0010201], Pozzorini [hep-ph/0201077], Manohar [1409.1918], Pagani, Zaro [2110.03714]
Manohar, Waalewijn [1802.08687], Chen, Glioti, Rattazzi, Ricci, Wulzer [2202.10509]

Here I am interested in resumming the EW double logs related to the initial-state radiation. At the leading-log level we can neglect soft radiation
Manohar, Waalewiin [1802.08687]

In case of collinear W emission they can be implemented (and resummed) at the Leading Log level by putting an explicit IR cutoff $\boldsymbol{z}_{\max }=1-Q_{E W} / Q$
M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0111109]

Bauer, Ferland, Webber [1703.08562]

LePDF

Results

PDFs of a muon

At high scales and well above threshold (small x) a muon has large EW boson PDFs,
but also gluons and quarks.

PDFs of a muon

At high scales and well above threshold (small x) a muon has large EW boson PDFs, but also gluons and quarks.

Longitudinal gauge bosons PDFs are dominated by ultra-collinear contributions from the muon
(and muon neutrino, for the W^{+}), which do not scale.
The Higgs instead has no coupling to massless fermions, so its PDF has no large u.c. contributions.

Some examples of parton luminosities for muon colliders. $\quad \mathcal{L}_{i j}(\hat{s})=\int_{\hat{s} / s_{0}}^{1} d x \frac{1}{x} f_{i}^{(\mu)}\left(x, \frac{\sqrt{\hat{s}}}{2}\right) f_{j}^{(\bar{\mu})}\left(\frac{\hat{s}}{x s_{0}}, \frac{\sqrt{\hat{s}}}{2}\right)$

Some comments:

- large $\boldsymbol{\mu} \overline{\boldsymbol{\mu}}$ and $\mu_{L} \bar{v}_{\mu}$ lumi at small $\sqrt{ } \hat{\boldsymbol{s}}$: possible sizeable impact on VBF studies from annihilation channel?
- The very large $\gamma \gamma$ lumi could dominate over Z contributions.
- gluon and quark luminosities are very small: small impact from QCD-induced backgrounds.
large $\boldsymbol{\mu} \overline{\boldsymbol{\mu}}$ and $\mu_{L} \bar{v}_{\mu}$ lumi at small $\sqrt{ } \hat{\boldsymbol{s}}$: possible sizeable impact on VBF studies from annihilation channel?

$\sigma=\sum_{\mathrm{ij}} \int \mathrm{d} \hat{\mathrm{s}} / \mathrm{s}_{0} \mathscr{L}_{\mathrm{ij}}(\hat{\mathbf{s}}) \hat{\sigma}(\hat{\mathbf{s}})$

large $\boldsymbol{\mu} \overline{\boldsymbol{\mu}}$ and $\mu_{L} \bar{v}_{\mu}$ lumi at small $\sqrt{ } \hat{\boldsymbol{s}}$: possible sizeable impact on VBF studies from annihilation channel?

large $\boldsymbol{\mu} \overline{\boldsymbol{\mu}}$ and $\mu_{L} \bar{v}_{\mu}$ lumi at small $\sqrt{ } \hat{\boldsymbol{s}}$: possible sizeable impact on VBF studies from annihilation channel?

large $\boldsymbol{\mu} \overline{\boldsymbol{\mu}}$ and $\mu_{L} \bar{v}_{\mu}$ lumi at small $\sqrt{ } \hat{\boldsymbol{s}}$: possible sizeable impact on VBF studies from annihilation channel?

large $\boldsymbol{\mu} \overline{\boldsymbol{\mu}}$ and $\mu_{L} \bar{v}_{\mu}$ lumi at small $\sqrt{ } \hat{\boldsymbol{s}}:$ possible sizeable impact on VBF studies from annihilation channel?

LePDF vs. EVA

$\mathbf{E V A}_{\mathbf{L O}}: \quad f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right)=\frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x)\left(\log \frac{Q^{2}+(1-x) m_{W}^{2}}{m_{\mu}^{2}+(1-x) m_{W}^{2}}-\frac{Q^{2}}{Q^{2}+(1-x) m_{W}^{2}}\right) \quad f_{W_{L}^{-}}^{(\alpha)}\left(x, Q^{2}\right)=\frac{\alpha_{2}}{4 \pi} \frac{1-x}{x} \frac{Q^{2}}{Q^{2}+(1-x) m_{W}^{2}}$
We can expect large deviations from EVA, since $\quad \alpha_{2}\left(\log \frac{Q^{2}}{m_{w}^{2}}\right)^{2} \sim 1 \quad$ for $Q \sim 1.5 \mathrm{TeV}$.

LePDF vs. EVA

$\mathbf{E V A}_{\mathbf{L O}}: f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right)=\frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x)\left(\log \frac{Q^{2}+(1-x) m_{W}^{2}}{m_{\mu}^{2}+(1-x) m_{W}^{2}}-\frac{Q^{2}}{Q^{2}+(1-x) m_{W}^{2}}\right) \quad f_{W_{L}^{L}}^{(\alpha)}\left(x, Q^{2}\right)=\frac{\alpha_{2}}{4 \pi} \frac{1-x}{x} \frac{Q^{2}}{Q^{2}+(1-x) m_{W}^{2}}$
We can expect large deviations from EVA, since $\quad \alpha_{2}\left(\log \frac{Q^{2}}{m_{w}^{2}}\right)^{2} \sim 1 \quad$ for $Q \sim 1.5 \mathrm{TeV}$

The EVA Z/y PDF is off by $\sim 10^{2}$, due to the fact that in EVA the muon is taken unpolarised and

$$
Q_{\mu_{L}}^{Z}+Q_{\mu_{R}}^{Z}=-\frac{1}{2}+2 s_{W}^{2} \ll 1
$$

Instead, the muon gains a $O(1)$ polarisation, so the Z / ψ PDF is much larger.

We can also see a sizeable deviation (in this log-log plot) for the $\mathbf{W}_{\mathbf{T}}$ and $\mathbf{Z}_{\mathbf{T}}$ PDF.

LePDF vs. EVA

The deviation becomes larger at small \mathbf{x} and at large scales (Sudakov double logs are absent in EVA).

LePDF vs. EVA

The deviation becomes larger at small x and at large scales (Sudakov double logs are absent in EVA).

We improve EVA by computing iteratively the $\boldsymbol{W}{ }^{-+} \mathbf{P D F}$ at $\mathbf{O}\left(\boldsymbol{\alpha}^{\mathbf{2}}\right)$. *

$$
\begin{aligned}
f_{\mu_{L}}^{(\alpha)}(x, t) & \simeq \int_{t_{m_{W}}}^{t} d t^{\prime}\left(\frac{1}{2} P_{\mu_{L}}^{v}\left(t^{\prime}\right) \delta(1-x)+\frac{\alpha_{\gamma}}{4 \pi} P_{f f}^{V}(x)+\frac{\alpha_{2}}{4 \pi c_{W}^{2}}\left(Q_{\mu_{L}}^{Z}\right)^{2} P_{f f}^{V}(x)\right), \\
f_{W_{+}^{-}}^{\left(\alpha^{2}\right)}(x, t) & \simeq \int_{t_{m_{W}}}^{t} d t^{\prime}\left(P_{W_{+}^{-}}^{v} f_{W_{+}^{-}}^{(\alpha)}+\frac{\alpha_{2}}{4 \pi} P_{V_{+} f_{L}}^{f} \otimes f_{\mu_{L}}^{(\alpha)}+\frac{\alpha_{2}}{2 \pi} c_{W}^{2} P_{V_{+} V_{s}} \otimes\left(f_{W_{s}^{-}}^{(\alpha)}+f_{Z_{s}}^{(\alpha)}\right)+\right. \\
& \left.+\frac{\alpha_{\gamma}}{2 \pi} P_{V_{+} V_{s}} \otimes\left(f_{W_{s}^{-}}^{(\alpha)}+f_{\gamma_{s}}^{(\alpha)}\right)+\frac{\sqrt{\alpha_{\gamma} \alpha_{2}}}{2 \pi} c_{W} P_{V_{+} V_{s}} \otimes f_{Z / \gamma_{s}}^{(\alpha)}\right) .
\end{aligned}
$$

* for simplicity, in the NLO part we take the $Q \gg m w$ and $x \ll 1$ limit
in the LO EVA expression.

Several double logs appear at this order,
we find a much improved agreement with the LePDF resummation.

LePDF vs. EVA: WW Luminosity

At the level of parton luminosity:

- for $\mathbf{W}_{\mathrm{T}} \mathbf{W}_{\mathrm{T}}$: EVALo is accurate to $\boldsymbol{\sim} 15 \%$
- for $\mathbf{W}_{\mathbf{L}} \mathbf{W}_{\mathbf{L}}$: EVALo is accurate to $\mathbf{\sim} \mathbf{5 \%}$
- The $\mathbf{Q \gg} \mathbf{m v}$ approximation does not reproduce well the complete result, with $\mathbf{O (1)}$ differences up to large scales (particularly for transverse modes).
$\mathrm{EVA}_{\mathrm{LO}} \quad f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right)=\frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x)\left(\log \frac{Q^{2}+(1-x) m_{W}^{2}}{m_{\mu}^{2}+(1-x) m_{W}^{2}}-\frac{Q^{2}}{Q^{2}+(1-x) m_{W}^{2}}\right)$
$\mathrm{EVA}_{\mathrm{LO}}{ }^{\mathrm{mV} \rightarrow 0} \quad f_{W_{ \pm}^{-}}^{(\alpha)}\left(x, Q^{2}\right) \approx \frac{\alpha_{2}}{8 \pi} P_{V_{ \pm} f_{L}}^{f}(x) \log \frac{Q^{2}}{m_{W}^{2}} \quad \begin{aligned} & \text { Implemented in MadGraph5_aMC@NLO } \\ & \text { Ruiz, Costantini, Maltoni, Mattelaer [2111.02442] }\end{aligned}$

Conclusions

We derived resummed SM PDFs for lepton colliders at the leading-log level: LePDF.

The results are made public in a LHAPDF6-type format: extended to include helicity dependence https://github.com/DavidMarzocca/LePDF
Some work is required to allow an interface with MadGraph5, anybody interested?

The large muon PDF at small x (an $\mathrm{O}\left(\alpha^{2}\right)$ effect) could be relevant for all VBF studies.
We show that the implementation of EVA with the Q»mW approximation is not sufficient, even at TeV scales.
When mass terms are included, EVA @ LO deviates by:

- up to $\mathbf{O}\left(30-40 \%\right.$) for $\mathbf{Z}_{\boldsymbol{T}}$ and $\mathbf{W}_{\boldsymbol{T}}$ at small x and large Q (few TeV)
- ~10 ${ }^{2}$ for the \mathbf{Z} / \mathbf{y} PDF.

At the level of $W_{T} W_{T}$ luminosities the deviation is $\sim 15 \%$ for MuC10.
This should be much improved by using EVA @ NLO (ongoing work).

We hope this tool can allow more comprehensive studies of physics potential at Muon Colliders!

Thank you!

Backup

Evolution below the EW scale

DGLAP equations below the EW scale:

$$
\begin{aligned}
\frac{d f_{l}}{d t}= & \frac{\alpha_{\gamma}(t)}{2 \pi}\left[\left(P_{f}^{v}+P_{f f, G}\right) \otimes f_{l}+P_{f V} \otimes f_{\gamma}\right] \\
\frac{d f_{q^{u}}}{d t}= & \frac{\alpha_{\gamma}(t)}{2 \pi} Q_{u}^{2}\left[\left(P_{f}^{v}+P_{f f, G}\right) \otimes f_{q^{u}}+N_{c} P_{f V} \otimes f_{\gamma}\right] \\
& +\frac{\alpha_{3}(t)}{2 \pi}\left[C_{F}\left(P_{f}^{v}+P_{f f, G}\right) \otimes f_{q^{u}}+T_{F} P_{f V} \otimes f_{g}\right] \\
\frac{d f_{q^{d}, b}}{d t}= & \frac{\alpha_{\gamma}(t)}{2 \pi} Q_{d}^{2}\left[\left(P_{f}^{v}+P_{f f, G}\right) \otimes f_{q^{d}, b}+N_{c} P_{f V} \otimes f_{\gamma}\right] \\
& +\frac{\alpha_{3}(t)}{2 \pi}\left[C_{F}\left(P_{f}^{v}+P_{f f, G}\right) \otimes f_{q^{d}, b}+T_{F} P_{f V} \otimes f_{g}\right] \\
\frac{d f_{\gamma}}{d t}= & \frac{\alpha_{\gamma}(t)}{2 \pi}\left[P_{\gamma}^{v} f_{\gamma}+\sum_{f} Q_{f}^{2} P_{V f} \otimes\left(f_{f}+f_{\bar{f}}\right)\right] \\
\frac{d f_{g}}{d t}= & \frac{\alpha_{3}(t)}{2 \pi}\left[C_{A}\left(P_{g}^{v}+P_{V V}\right) \otimes f_{g}+C_{F} P_{V f} \otimes \sum_{q}\left(f_{q}+f_{\bar{q}}\right)\right]
\end{aligned}
$$

$$
t \equiv \log \left(\mu^{2} / m_{\mu}^{2}\right)
$$

Thanks to flavour symmetry and C and P invariance of QED+QCD we can identify:

$$
\begin{aligned}
f_{\ell_{\text {sea }}} & =f_{e}=f_{\tau}=f_{\bar{e}}=f_{\bar{\mu}}=f_{\bar{\tau}} \\
f_{q^{u}} & =f_{u}=f_{\bar{u}}=f_{c}=f_{\bar{c}}, \\
f_{q^{d}} & =f_{d}=f_{\bar{d}}=f_{s}=f_{\bar{s}}, \\
f_{b} & =f_{\bar{b}} .
\end{aligned}
$$

IR poles in $z=1$ are regulated using the + -distribution

$$
\int_{x}^{1} d z \frac{f(z)}{(1-z)_{+}}=\int_{x}^{1} d z \frac{f(z)-f(1)}{1-z}-f(1) \int_{0}^{x} \frac{d z}{1-z}
$$

Numerical procedure:

- Discretize the equations in a grid in " x "
- Perform the integrals with the rectangles method
- Solve numerically the coupled set of differential equations using the Runge-Kutta algorithm
(we implemented both in c++ and Mathematica, for cross-check).
- Momentum conservation is imposed at each step.

Photon - Z mixing

Photon and \mathbf{Z} bosons can interfere

In the collinear limit this can be described by a mixed Z/ү PDF.
Similarly for ZL and H .
P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0505047]

Chen, Han, Tweedie [1611.00788]

The splitting function must be generalised to a splitting matrix. The rate is computed by tracing against the matrix of the hard scattering process

Photon - Z mixing

Photon and \mathbf{Z} bosons can interfere.
The interference term is described by a mixed Z/y PDF
Similarly for ZL and H.
P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0505047]

Chen, Han, Tweedie [1611.00788]
Matrix splitting function: $\quad\left[\frac{d \mathcal{P}_{A \rightarrow B+C}}{d z d k_{T}^{2}}\right]_{i j} \simeq \frac{1}{16 \pi^{2}} \frac{1}{z \bar{z}} \mathcal{M}_{k}^{(\text {split)* }} \mathcal{D}_{k i}^{*} \mathcal{D}_{j l} \mathcal{M}_{l}^{\text {(split) }}$
The propagators are diagonal in the mass basis:

$$
\begin{gathered}
\mathcal{D}_{\gamma \gamma}=\frac{i}{q^{2}}, \quad \mathcal{D}_{Z Z}=\frac{i}{q^{2}-m_{Z}^{2}}, \quad \mathcal{D}_{\gamma Z}=\mathcal{D}_{Z \gamma}=0 \\
\mathcal{D}_{h h}=\frac{i}{q^{2}-m_{h}^{2}}, \quad \mathcal{D}_{Z_{L} Z_{L}}=\frac{i}{q^{2}-m_{Z}^{2}}, \quad \mathcal{D}_{h Z_{L}}=\mathcal{D}_{Z_{L} h}=0
\end{gathered}
$$

One can go from the mass to the gauge basis via a Weinberg angle rotation, e.g.:

$$
\left(\begin{array}{c}
B \\
W_{3} \\
B W_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\cos ^{2} \theta_{W} & \sin ^{2} \theta_{W} & -\cos \theta_{W} \sin \theta_{W} \\
\sin ^{2} \theta_{W} & \cos ^{2} \theta_{W} & \cos \theta_{W} \sin \theta_{W} \\
2 \cos \theta_{W} \sin \theta_{W} & -2 \cos \theta_{W} \sin \theta_{W} & \cos ^{2} \theta_{W}-\sin ^{2} \theta_{W}
\end{array}\right)\left(\begin{array}{c}
\gamma \\
Z \\
Z \gamma
\end{array}\right)
$$

EW Sudakov double logs from ISR

In case of collinear W emission they can be implemented (and resummed) at he Double Log level equations by putting an explicit IIR cutoff ${ }_{\operatorname{m}}^{\max }=1-Q_{E W} / Q \quad\left(Q_{E W}=m_{W}\right)$
M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0111109]

Bauer, Ferland, Webber [1703.08562]
see Manohar, Waalewijn [1802.08687] for a different approach
$\frac{\alpha_{A B C}(Q)}{2 \pi} \int_{x}^{1} \frac{d z}{z} P_{B A}^{C}(z) f_{A}\left(\frac{x}{z}, Q^{2}\right) \rightarrow \frac{\alpha_{A B C}(Q)}{2 \pi} \int_{x}^{z_{\max }^{A B C}(Q)} \frac{d z}{z} P_{B A}^{C}(z) f_{A}\left(\frac{x}{z}, Q^{2}\right)$

This modifies also the virtual corrections as:

$$
P_{A}^{v}(Q) \supset-\sum_{B, C} \frac{\alpha_{A B C}(Q)}{2 \pi} \int_{0}^{z_{\max }^{A B C}(Q)} d z z P_{B A}^{C}(z)
$$

The non-cancellation of the $z_{\max }$ dependence between emission and virtual corrections generates the double logs.

This happens if $\quad P_{B A}^{C}, U_{B A}^{C} \propto \frac{1}{1-z}$ and $A \neq B \quad$ otherwise we set $z_{\max }=1$ and use the + -distribution.

EW Sudakov double logs from ISR

For illustration, let us consider the μ_{L} and v_{μ} DGLAP equations
and only interactions with transverse $\mathbf{W}^{ \pm}$
$\frac{d f_{\mu_{L}}}{d \log Q^{2}}=\frac{\alpha_{2}}{2 \pi} \frac{1}{2} \int_{0}^{z_{\max }(Q)} d z P_{f f}^{V}(z)\left(\frac{1}{z} f_{\nu_{\mu}}\left(\frac{x}{z}, Q^{2}\right)-z f_{\mu_{L}}\left(x, Q^{2}\right)\right)+$ IR-finite terms
$\frac{d f_{\nu_{\mu}}}{d \log Q^{2}}=\frac{\alpha_{2}}{2 \pi} \frac{1}{2} \int_{0}^{z_{\max }(Q)} d z P_{f f}^{V}(z)\left(\frac{1}{z} f_{\mu_{L}}\left(\frac{x}{z}, Q^{2}\right)-z f_{\nu_{\mu}}\left(x, Q^{2}\right)\right)+$ IR-finite terms

We are interested in the IR divergent terms, take $z \rightarrow 1$ for all regular terms inside the integrand:
$\frac{d f_{\mu_{L}}}{d \log Q^{2}} \approx-\frac{\alpha_{2}}{4 \pi} \Delta f_{L_{2}}(x) \int_{0}^{z_{\max }(Q)} d z \frac{2}{1-z}+\ldots \approx-\frac{\alpha_{2}}{4 \pi} \log \frac{Q^{2}}{Q_{\mathrm{EW}}^{2}} \Delta f_{L_{2}}(x)+\ldots$,

$$
\Delta f_{L_{2}}(x) \equiv f_{\mu_{L}}(x)-f_{\nu_{\mu}}(x)
$$

$\frac{d f_{\nu_{\mu}}}{d \log Q^{2}} \approx \frac{\alpha_{2}}{4 \pi} \Delta f_{L_{2}}(x) \int_{0}^{z_{\max }(Q)} d z \frac{2}{1-z}+\ldots \approx \frac{\alpha_{2}}{4 \pi} \log \frac{Q^{2}}{Q_{\mathrm{EW}}^{2}} \Delta f_{L_{2}}(x)+\ldots$,
Upon integration in $\log Q^{2}$ one gets the double log: it is negative for μ_{L} and positive for \mathbf{v}_{μ}, tends to restore $\operatorname{SU}(2)$ L invariance at high scales and vanishes when the two become equal.

It is not present for \mathbf{Z} and \boldsymbol{y} interactions with fermions, since in the RHS the same fermion PDF enters.

Mass effects

1) Kinematical effects of emitted real radiation

The particle C is emitted on-shell: its energy is bounded to be $E_{C}=(z-x) E>m_{C} \quad z \geq x+\frac{m_{C}}{E}$ In the limit where collinear factorisation is valid, $E \gg p_{T}, m$, we can neglect this effect.

2) Propagator effects

The mass modifies the propagator of the off-shell parton which then enters the hard scattering:

$$
\tilde{p}_{T}^{2} \equiv \bar{z}\left(m_{B}^{2}-q^{2}\right)=p_{T}^{2}+z m_{C}^{2}+\bar{z} m_{B}^{2}-z \bar{z} m_{A}^{2}+\mathcal{O}\left(\frac{m^{2}}{E^{2}}, \frac{p_{T}^{2}}{E^{2}}\right)
$$

This can be implemented by a rescaling of the massless splitting functions:

$$
P_{B A}^{C}(z) \quad \rightarrow \quad \widetilde{P}_{B A}^{C}\left(z, p_{T}^{2}\right)=\left(\frac{p_{T}^{2}}{\widetilde{p}_{T}^{2}}\right)^{2} P_{B A}^{C}(z) \quad \text { Chen, Han, Tweedie [1611.00788] }
$$

Mass effects

$\widetilde{p}_{T}^{2} \equiv \bar{z}\left(m_{B}^{2}-p_{B}^{2}\right)=p_{T}^{2}+z m_{C}^{2}+\bar{z} m_{B}^{2}-z \bar{z} m_{A}^{2}+\mathcal{O}\left(\frac{m^{2}}{E^{2}}, \frac{p_{T}^{2}}{E^{2}}\right)$

Ultracollinear splittings

In the unbroken phase, splitting matrix elements are proportional to $p_{\mathrm{T}}{ }^{2}$

$$
|\mathcal{M}(A \rightarrow B+C)|^{2} \equiv 8 \pi \alpha_{A B C} \frac{p_{T}^{2}}{z \bar{z}} P_{B A}^{C}(z)
$$

Ultra-collinear splitting function Chen, Han, Tweedie [1611.00788]

Upon EWSB, further splittings proportional to v^{2} are generated. They generalise the EWA splitting $f \rightarrow W_{L} f^{\prime}$

$$
\left|\mathcal{M}_{A \rightarrow B+C}\right|^{2} \equiv \frac{v^{2}}{z \bar{z}} P_{B A, C}^{u . c .}(z)
$$

For example: $\quad P_{f_{L}^{(2)} f_{L}^{(1)}, W_{L}}^{u . c .}(z)=\left(y_{f_{1}}^{2} z \bar{z}-y_{f_{2}}^{2} \bar{z}-g_{2}^{2} z\right)^{2} \frac{1}{2 \bar{z}_{+}}$
coupling of massless fermions to W_{L},
with no chirality flip
(via coupling to remainder gauge field W_{n} in $G E G$)

The missing $p_{\mathrm{T}}{ }^{2}$ factor removes the log enhancement at high scales,
making the u.c. terms approach a constant value.
The DGLAP equations are generalised as:

$$
Q^{2} \frac{d f_{B}\left(x, Q^{2}\right)}{d Q^{2}}=P_{B}^{v} f_{B}\left(x, Q^{2}\right)+\sum_{A, C} \frac{\alpha_{A B C}}{2 \pi} \widetilde{P}_{B A}^{C} \otimes f_{A}+\frac{v^{2}}{16 \pi^{2} Q^{2}} \sum_{A, C} \widetilde{U}_{B A}^{C} \otimes f_{A}
$$

Effective W approximation

Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard '84

Solving the DGLAP equations iteratively at LO we recover the EWA:

$$
\begin{aligned}
f_{W_{T}^{-}}^{\mathrm{LO}}\left(x, \mu^{2}\right) & =\int_{m_{\mu}^{2}}^{\mu^{2}} d p_{T}^{2} \frac{1}{2} \frac{d \mathcal{P}_{\psi \rightarrow W_{T} \psi}}{d p_{T}^{2}}\left(x, p_{T}^{2}\right)=\int_{m_{\mu}^{2}}^{\mu^{2}} d p_{T}^{2} \frac{g^{2}}{32 \pi^{2}} \frac{p_{T}^{2}}{\left(p_{T}^{2}+(1-x) m_{W}^{2}\right)^{2}} \frac{1+(1-x)^{2}}{x}= \\
& \approx \frac{g^{2}}{32 \pi^{2}} \frac{1+(1-x)^{2}}{x}\left(\log \frac{\mu^{2}}{m_{W}^{2}}-\log (1-x)-1\right)+\mathcal{O}\left(\frac{m_{W}^{2}}{\mu^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{W_{L}^{-}}^{\mathrm{LO}}\left(x, \mu^{2}\right)=\int_{0}^{\mu^{2}} d p_{T}^{2} \frac{1}{2} \frac{d \mathcal{P}_{\psi \rightarrow W_{L} \psi}}{d p_{T}^{2}}\left(x, p_{T}^{2}\right)=\int_{0}^{\mu^{2}} d p_{T}^{2} \frac{g^{2}}{16 \pi^{2}} \frac{m_{W}^{2}}{\left(p_{T}^{2}+(1-x) m_{W}^{2}\right)^{2}} \frac{(1-x)^{2}}{x} \\
&=\frac{g^{2}}{16 \pi^{2}} \frac{1-x}{x} \frac{\mu^{2}}{\mu^{2}+(1-x) m_{W}^{2}} \approx \frac{g^{2}}{16 \pi^{2}} \frac{1-x}{x}+\mathcal{O}\left(\frac{m_{W}^{2}}{\mu^{2}}\right) . \quad \text { ultra-collinear term, } \\
& \quad \text { vanishes for } \vee \rightarrow 0
\end{aligned}
$$

See also Borel et al. [1202.1904], Costantini et al. [2005.10289] Ruiz et al. [2111.02442], etc.
They receive a substantial contribution from scales $\mu<m_{W}$, particularly the longitudinal polarization.

To recover this, at the EW matching scale we use the
EWA as boundary condition for the EW gauge bosons:

$$
f_{W_{L, \pm}^{-}, Z_{L, \pm}}\left(x, \mu_{\mathrm{EW}}^{2}\right) \equiv f_{W_{L, \pm}^{-}, Z_{L, \pm}}^{\mathrm{LO}}\left(x, \mu_{\mathrm{EW}}^{2}\right)
$$

Effective W approximation

dashed: massless
Looking at the effect of the mass in the propagator.

For the W_{T} a correct treatment of the mass is important also at very high scales.

In case of W_{L}, the effect is purely an EWSB one, so we can take the massless limit only at the end of the computation.
In case of WT I do the integral with massless propagator from m_{w} up to μ.
large $\boldsymbol{\mu} \overline{\boldsymbol{\mu}}$ and $\mu_{L} \bar{v}_{\mu}$ lumi at small $\sqrt{ } \hat{\boldsymbol{s}}$: possible sizeable impact on VBF studies from annihilation channel?

No PDF

Top quark PDF

For hard scattering energies $E \gg m_{t}$, terms with $\log E / m_{t}$ due to collinear emission of top quarks can arise. These can be resummed by including the top quark PDF within the DGLAP evolution, in a $\mathbf{6 F S}$.
Barnett, Haber, Soper '88; Olness, Tung '88
Whether or not this is useful depends on the process under consideration.
Dawson, Ismail, Low [1405.6211] Han, Sayre, Westhoff [1411.2588]

We provide two version of the codes: 5FS and 6FS In the 6FS we keep finite top quark mass effects, like we do for other heavy SM states.

LePDF - LHAPDF6

Extended to include helicity \& Z_{γ} and $Z_{L h}$ PDFs

LePDF_mu_6FS_0000.dat

LePDF mu 6FS.info

1
2
3
4
4
5
6
7
7
8
9
\cdots
\cdots
10
\cdots
\cdots
11
12
13
14
15
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Reference: 2303.16964
PdfType: central
Format: Lhagrid1
DataVersion: 1
Narticle: 1 $+\quad-\quad+$
OrderaCD: 0
ForcePositive:
FlavorScheme: fixed
NumFlavors: 6
XMin: $1 \mathrm{le}-06$
XMax: 1
OMin: 1.0984270e+001
OMax: 5.7222760e+004
MMuon: 0. 105658
MV: 80.379
MZ: 91.1876
MUp: 0
MDown: 0
MDown: 0
MStrange:
MStrange: 0
MCharm: 0
MCharm: ©
MTop: 163
Q OCD: 0.7
AlphaS_MZ: 0.117982
Alphas_OrderaCD: 3

SetDesc: "PDFs of muon obtained in the 6FS."
$\begin{array}{lllllllllllllllllllllllll}\text { Flavors: } & {[11} & 11 & 12 & 13 & 13 & 14 & 15 & 15 & 16 & -11 & -11 & -12 & -13 & -13 & -14 & -15 & -15 & -16 & 1 & 1 & 2 & 2 & 3\end{array}$

AlphaS_ype: ipol $2.330478 \mathrm{e}+000,2.992393 \mathrm{e}+000,3.842309 \mathrm{e}+000,4.933623 \mathrm{e}+000,6.334897 \mathrm{e}+000,8.134169 \mathrm{e}+000$
$1.044448 \mathrm{e}+001,1.341098 \mathrm{e}+001,1.722004 \mathrm{e}+001,2.211096 \mathrm{e}+001,2.839104 \mathrm{e}+001,3.645481 \mathrm{e}+001$,
$4.680891 \mathrm{e}+001,6.010383 \mathrm{e}+001,7.717484 \mathrm{e}+001,9.909446 \mathrm{e}+001,1.272398 \mathrm{e}+002,1.633791 \mathrm{e}+002$
$2.097830 \mathrm{e}+002,2.693667 \mathrm{e}+002,3.458736 \mathrm{e}+002,4.441106 \mathrm{e}+002,5.702492 \mathrm{e}+002,7.322145 \mathrm{e}+002$,
$9.401821 \mathrm{e}+002,1.207218 \mathrm{e}+003,1.550098 \mathrm{e}+003,1.990365 \mathrm{e}+003,2.555580 \mathrm{e}+003,3.281558 \mathrm{e}+003$
$\begin{array}{lll}4.2138406 \mathrm{e}+004, & 2.424761 \mathrm{e}+004,3.113455 \mathrm{e}+004, & 3.997756 \mathrm{e}+004,5.133220 \mathrm{e}+004, \\ 1.591185 \mathrm{e}+004,\end{array}$
8. $463249 \mathrm{e}+004,1.086703 \mathrm{e}+065$]

AlphaS_Vals: $[1.940162 \mathrm{e}+000,7.628886 \mathrm{e}-001,5.367480 \mathrm{e}-001,4.247334 \mathrm{e}-001,3.578471 \mathrm{e}-001,3.132930 \mathrm{e}-001$, $2.792927 \mathrm{e}-001,2.523730 \mathrm{e}-001,2.304627 \mathrm{e}-001, \quad 2.133792 \mathrm{e}-001,1.992541 \mathrm{e}-001,1.869478 \mathrm{e}-001$, $1.761231 \mathrm{e}-001,1.665225 \mathrm{e}-001,1.579456 \mathrm{e}-001,1.502341 \mathrm{e}-001,1.432610 \mathrm{e}-001,1.369234 \mathrm{e}-001$ $1.313687-091,1.25833 \mathrm{e}-001,1.201313 \mathrm{e} 092,1.1643849 \mathrm{e} 092,1.32558 \mathrm{e}-001,1.083816 \mathrm{e}-001$ $8.902925 \mathrm{e}-002,8.682095 \mathrm{e}-002,8.472079 \mathrm{e}-002,8.272096 \mathrm{e}-002,8.081441 \mathrm{e}-002,7.899470 \mathrm{e}-002$, 7.725599e-002, $7.559297 \mathrm{e}-002,7.40075 \mathrm{e}-002,7.247489 \mathrm{e}-002,7.101129 \mathrm{e}-002,6.960620 \mathrm{e}-002$,
$6.825616 \mathrm{e}-002,6.695797 \mathrm{e}-002,6.570869 \mathrm{e}-002,6.450559 \mathrm{e}-002,6.334613 \mathrm{e}-002,6.222798 \mathrm{e}-002$,

LePDF: Numerical Implementation

We solve the DGLAP numerically in x space. Due to the sharp behaviour of the muon PDF near $x=1$, the typical interpolation techniques used for PDFs of proton do not work.

We discretise x interval $\left[x_{\text {min }}=10^{-6}, 1\right]$ in N_{x} small intervals, denser for $x \approx 1: \quad x_{\alpha}=10^{-6\left(\left(N_{x}-\alpha\right) / N_{x}\right)^{2.5}}$ $\alpha=0,1, \ldots, N_{x}$
For the splitting functions divergent in $z \rightarrow 1$ we us the " + " distribution

$$
\int_{x}^{1} d z \frac{f(z)}{(1-z)_{+}}=\int_{x}^{1} d z \frac{f(z)-f(1)}{1-z}-f(1) \int_{0}^{x} \frac{d z}{1-z}=\int_{x}^{1} d z \frac{f(z)-f(1)}{1-z}+f(1) \log (1-x)
$$

The differential evolution is done in $t=\log \mathrm{Q}^{2} / \mathrm{m}_{\mu}{ }^{2}$ with 4th order Runge-Kutta.

$$
\text { At X=1 we fix } \quad f_{i N_{x}}(t)=\left\{\begin{array}{ll}
\frac{L(t)}{\delta x_{N_{x}}} & i=\mu \\
0 & i \neq \mu
\end{array} \quad L(t)=1-\sum_{i=1}^{N_{f}} \sum_{\alpha=1}^{N_{x}-1} \delta x_{\alpha} x_{\alpha} f_{i \alpha}(t) \quad \text { where } L(t)\right. \text { is fixed imposing momentum conservation: }
$$

The uncertainties due to x and t discretisation are estimated to be of $\sim 1 \%$ and $\sim 0.1 \%$, respectively, for $N_{x}=1000$.

Leptoquarks: \mathbf{S}_{3}

$$
\mathrm{S}_{3}=(\overline{\mathbf{3}}, 3,1 / 3) \quad \mathcal{L}_{S_{3}}^{\mathrm{int}}=\lambda_{i \mu} \overline{Q_{L}^{i c}} \epsilon \sigma^{I} L_{L}^{2} S_{3}^{I}+\text { h.c. }
$$

s-channel LQ:

quarks inside the PDF of muon

