Sudakov Logs at the Muon Collider

Alfredo Glioti

Institut de Physique Théorique

IMCC Annual Meeting 2023 20/06/2023

Based on:

Learning from radiation at a very high energy lepton collider Chen, Glioti, Rattazzi, Ricci, Wulzer **2202.10509**

Introduction

Chen, AG, Rattazzi, Ricci, Wulzer (2022)

-0.5

0W × 10⁶

 $^{-1}$

0.5

Double (Sudakov) Logs appear in cross-sections involving soft and collinear EW bosons

20/06/2023

 $E_{\rm cm}[{\rm TeV}]$

Alfredo Glioti (IPhT)

2

EW Double Logs

Chen, AG, Rattazzi, Ricci, Wulzer (2022)

Why are Electroweak Double Logs special?

- The EW group is non-abelian and spontaneously broken:
 - Double Logs do **not cancel out** even for inclusive observables
 - Initial/final states are not EW singlets
- EW theory is weakly coupled
- IR cutoff (m_W) is **physical**
- Double Logs are **extremely large** at a Muon Collider

These effects must be **resummed** in order to reach % level precision!

BN Theorem violation Ciafaloni, Ciafaloni, Comelli (2000)

Part 1 – Resumming Double Logs

Which observables?

Chen, AG, Rattazzi, Ricci, Wulzer (2022)

We consider two representative observables for which we know how to perform the DL resummation

- Two hard final particles with definite EW color
- Veto on soft/collinear EW radiation
- Inclusive on soft photons/gluons

- Two hard final particles with definite EW color
- All **radiation** is **allowed** (up to some hardness threshold)
- "Semi" since we don't sum over external legs colors

IREE strategy

Chen, AG, Rattazzi, Ricci, Wulzer (2022)

Our resummation strategy is based on an InfraRed Evolution Equation (IREE)

Fadin, Lipatov, Martin, Melles, 1999

- Introduce an unphysical IR cutoff λ

$$\lambda < \min \left| \frac{(k_i \cdot q)(k_j \cdot q)}{(k_i \cdot k_j)} \right|$$

- Compute derivative of the observable wrt $\,\lambda\,$ through ${\rm diagrammatic}$ techniques

$$\frac{d}{d\lambda}\mathcal{O}^{\lambda} = \mathcal{K} \cdot \mathcal{O}^{\lambda}$$

• Solve the IREE with the **boundary condition**

$$\mathcal{O}^{\lambda=E^2} \equiv \mathcal{O}^{\mathrm{Born}}$$

Exclusive observables

Semi-inclusive observables

Semi-inclusive observables

Summary of Results

Chen, AG, Rattazzi, Ricci, Wulzer (2022)

- In both cases the Kernel and double logs simply **exponentiate**
- **Exclusive** Kernel is **color-diagonal**. Gives an exponential **suppression** factor for each external leg **proportional** to its EW **Casimir**
- Semi-inclusive Kernel is off-diagonal. All allowed Born amplitude are mixed together
- SI-Kernel has a **leg-by-leg structure** that vanishes when summed over leg color (similar to KLN theorem, but stronger result)

$$\mathcal{K}^{\alpha\bar{\alpha}}_{\beta\bar{\beta}} = \frac{g^2}{16\pi^2} \sum_i \left[c_i \,\delta^{\alpha_i}_{\beta_i} \delta^{\bar{\alpha}_i}_{\bar{\beta}_i} + \sum_{A=1,2,3} (T^A_i)^{\alpha_i}_{\ \beta_i} (T^A_{i^c})^{\bar{\alpha}_i}_{\ \bar{\beta}_i} \right] \left[\prod_{j\neq i} \delta^{\alpha_j}_{\beta_j} \delta^{\bar{\alpha}_j}_{\bar{\beta}_j} \right]$$

 Abelian hypercharge term cancels out in semi-inclusive observables as expected from BN theorem

Alfredo Glioti (IPhT)

Effect of Double and Single Logs

Chen, AG, Rattazzi, Ricci, Wulzer (2022)

Single-Logs (virtual only) added at fixed-order from Denner, Pozzorini (2000)

Alfredo Glioti (IPhT)

Effect of Double and Single Logs

	$10 { m TeV}$					
	DL	$e^{\mathrm{DL}}-1$	$\operatorname{SL}(\frac{\pi}{2})$			
$\ell_L \to \ell'_L$	-0.82	-0.56	0.33			
$\ell_L \to q_L$	-0.78	-0.54	0.34			
$\ell_L \to e_R$	-0.56	-0.43	0.17			
$\ell_L \to u_R$	-0.48	-0.38	0.15			
$\ell_L \to d_R$	-0.43	-0.35	0.13			
$\ell_R \to \ell'_L$	-0.56	-0.43	0.17			
$\ell_R \to q_L$	-0.53	-0.41	0.16			
$\ell_R \to \ell'_R$	-0.30	-0.26	0.09			
$\ell_R \to u_R$	-0.22	-0.20	0.07			
$\ell_R \to d_R$	-0.17	-0.16	0.05			

Part 2 – Probing New Physics

Radiation for BSM

Chen, AG, Rattazzi, Ricci, Wulzer (2022)

Thanks to the large double logs processes with soft emission become as likely as processes allowed at tree-level

Results on effective operators

Avoiding flat direction

Chen, AG, Rattazzi, Ricci, Wulzer (2022)

Alfredo Glioti (IPhT)

Reach on BSM models

Chen, AG, Rattazzi, Ricci, Wulzer (2022)

Tree-level prediction for OH from Buttazzo, Franceschini, Wulzer, 2020

Composite top

Conclusions

- The effects of EW radiation are extremely large and must be resumed to reach % level of precision at a Muon Collider
- A better understanding of EW radiation is needed: how to compute more general observables? (eg. ISR inclusive) how to include single-logs?
- Large radiation effect allows to probe New Physics in a richer way compared to tree-level prediction
- A 10 TeV Muon Collider can indirectly probe New Physics up to 100+ TeV
- WIP: a user-friendly implementation of these computations for these processes + production of heavy EW multiplets

	$3 { m TeV}$			$10 { m TeV}$		
	DL	$e^{\mathrm{DL}}-1$	$\operatorname{SL}(\frac{\pi}{2})$	DL	$e^{\mathrm{DL}}-1$	$\operatorname{SL}(\frac{\pi}{2})$
$\ell_L \to \ell'_L$	-0.46	-0.37	0.25	-0.82	-0.56	0.33
$\ell_L \to q_L$	-0.44	-0.36	0.25	-0.78	-0.54	0.34
$\ell_L \to e_R$	-0.32	-0.27	0.13	-0.56	-0.43	0.17
$\ell_L \to u_R$	-0.27	-0.24	0.11	-0.48	-0.38	0.15
$\ell_L \to d_R$	-0.24	-0.21	0.10	-0.43	-0.35	0.13
$\ell_R \to \ell'_L$	-0.32	-0.27	0.13	-0.56	-0.43	0.17
$\ell_R \to q_L$	-0.30	-0.26	0.12	-0.53	-0.41	0.16
$\ell_R \to \ell'_R$	-0.17	-0.16	0.07	-0.30	-0.26	0.09
$\ell_R \to u_R$	-0.12	-0.12	0.05	-0.22	-0.20	0.07
$\ell_R \to d_R$	-0.09	-0.09	0.04	-0.17	-0.16	0.05

