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Status of Neutrino Physics in 2023

mixing angles:
sin‘,, @ 4%
sin“0,3 @ 3%
sin®0,; @ 3%

Super-Kamiokande, Borexino, SNO

MBL: Daya Bay, RENO, Double Chooz

LBL: KamLAND )
mass squared differences:

Am5, @ 3%
|Am4, | @ 1%

IceCube, Super-Kamiokande Future: DUNE, T2HK , JUNO

¥

* Increase the precision
e CP-phase?
* Mass hierarchy?

T2K, MINOS, NOvA
Also:

Mass scale? Dirac or Majorana?

: Sterile?
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Neutrino Factories

Do we still need a Neutrino Factory?

: . |deal to investigate
High beam luminosity + P ISt

Large fiducial mass A ilane

* Equal numbers of electron/muon (anti)neutrinos;
* Very high luminosity for both muon and electron flavor content;
*  Well known neutrino energy spectra at tens of GeV;

* Very well determined beam intensity;

[ The only experiment to over constrain oscillation for 3-neutrino paradigm:;

d In case of anomalies, a NF would be ideal to investigate them;
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Neutrino Factories

New
neutrino
states

Light
Dark
Matter

Searches
for LFV

Heavy BSM
using EFT

Given its unique beam characteristics, NF will be remarkable to
explore a much wider range of new physics!
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Synergies with a Muon Collider

Neutrino Factory (NuMAX)

v Factory Goal:
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Muon production, capture, and cooling would directly benefit a neutrino factory;

The need for a Cooling Demonstrator Facility (CDF) as part of a Muon Collider R&D

program might breathe new life into the nuSTORM concept;
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IMCC Demonstrator

d Rich physics opportunities;
d The need to prepare for a post-
DUNE program;

Detailed studies of a NF
complex is needed

Target +horn (1% phase) Downstream E
/ superconducting Collimation and upstream diagnostics |
soIenond (2" phase)  diagnostics area: 10x4 m area: 5x4m :
Momentum selection Cooling area:
chicane 10x4 m 50x4 m

: MuC cooling demonstrator
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Oscillation at Muon Colliders?
Unlikely?

At TeV energy range, the relevant baseline to see oscillation is 106 (108) km for
atmospheric (solar) oscillation parameters.

A neutrino detector at the moon?
We are not there yet!
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Neutrino Fixed Target Experiment at a Muon Collider

Acceleration

Why would a Muon

Collider Help?
NO OSCi]l]latiOH, ]bUllt: Accelerators:
Linac, RLA or FFAG, RCS
Very high beam Precisely known
luminosity energy spectra
Equal numbers of e/u Very well determined
(anti)neutrinos beam intensity

* Ideal to investigate rare/new neutrino interactions

* Search for BSM physics
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Case 1: SM Search (Precision in Neutrino Cross Section Measurements)

FASER Collaboration, 2020
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d Currently no high energy v, beam
d A lot of v, but not well known beam

* Well known beam, direct extraction of the x-sections with much greater precision

* DIS dominates, we can probe nucleon structure at low Bjorken x and high Q?
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Long Baseline Accelerator Experiments

* 0.1-10 GeV energy range: cross section is much more involved!

G. Zeller

§1 4

lllllllll

10" 1 10 10?

J.A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (2012)
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Physics Case 2: Precision in Weak Mixing Angle

Er =[0.05, 2 - DUNE ¥ mod
& = [0.05, 20] GeV UNE v + v modes The Physics Case for a Neutrino Factory

T IIIIIII' T IIIIIIII T IIIIIII| T IIIIIIII T IIII]III T T TTTIT

0.244 N 2203.08094
i — DUNE - PRISM
I — On-Axis Ty
0.242 -
i v—e i
L DUNE _— il
0.240 ’ - . - .
i I ] The most precise measurement of sin“6y, using
0.238 [\ ] neutrino scattering, at (Q) = 4.5 GeV.
B Qweak =
0.236 - § Deviates from the LEP measurement at 3o level.
B PVDIS .
0.234 |APV(©Cy -
" a iy o(W(D)N — v([0)X)
: | O = oy ~ 8+ 283
0.232+ — oc(W@)N = ¢-HX)
0.230 - | | | | | - sin® 6, ((Q%) = 20 GeV?) = 0.2277 £ 0.0013 £ 0.0009

1073 102 101 100 10t 102 103
Q [GeV] G. P. Zeller et al. (NuTeV), (2002)

Main uncertainty at NuTeV: Subtraction of the v, CC contamination from the NC sample.
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How about “Heavy' New Physics?

Affect Neutrino Interactions: Indirect Searches

/fa €p
m—l

) e— e—- ﬂ

L

o

Observable: rate of detected events
~ (flux)x(det. cross section) x (oscillation)

/7 N
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Physics Case 3: Indirect BSM Searches (SMEFT)
MA1

EFT ]Energy Scale Translation to specific benchmark models
A
A
v « \
SMEFT / BSM #2 BSM #3
T | ° Colliders/High-Energy
100 GeV 4+ L
WEFT
oG Neutrinos/Low Encrgy By measuring the WEFT parameters at neutrino
experiments, which can give complementary or
Y dominant constraints, we can get constraints on

higher dimensional SMEFT interactions and
compare the results with high energy colliders.
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EFT ]Lﬂldd@][‘ WEFT: Effective Lagrangian defined at a low scale

A

| TeV T

100 GeV +

10 GeV +

6/20/2023

A

* CC: New left/right handed, (pseudo)scalar and tensor interactions

2 Vud

LWEFT DO — { [1 +@ U’Y“PLd)(fa’yule/g)

+a5(u7“ Prd)(€ayuPLvg)

e 1 _ -
+ 5 (€S)as (@) (€ Prvs) — fep)ap(@r5d) (CaPrvs)

.. le@ag(ﬂa‘“’PLd) (ZQOIWPLVB) + hC}

* NC: New left and right handed interactions

2 _ —
LWEFT D —v—2(Va’y“PLI/,3) (f’)’uPXf)

* Neutrino experiments
* Hadron Decays
* B-decays
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FASERvV-like Detector?

Downstream of ATLAS at of 480 m;
Ideal for detecting high-energy neutrinos at LHC;

1.1-t of tungsten material; b o Lc B
. . | TI12 B —
Several production modes; . ‘

Pion and Kaon decays are the dominant ones;

All (anti)neutrino flavors are available; i T I TRn T PO g
=
"g 1011
.
8
£
5
= 10°
k) P
E . Bottom _-',
107 - L . L L L i L i
10 102 103 104 10 102 103 104 10 102 103 104
M =150 -1 &M L=150b-1 M =150 fb-!
=]
B _Pion _
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é ................
= 10°
Within the SM: 2 ot -
2 } : Bottom
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EFT at FASERv

Falkowski, Gonzalez-Alonso, Kopp, Soreq, ZT, JHEP (2021)

FASERv: colored bars

Top: Conservative/Optimistic flux uncertainties

Bottom: High luminosity LHC

Neutrino detectors can identify flavor: 81
operators at FASERv

New physics reach at multi-TeV

Complementary or dominant constraints

» Results are statistics dominated: ve~1000, v Mad 5000, v,~10

1 107" 1072 1072
| L | L | L |
L=150fb™',90% C.L.
[evd] Cons./Opt. I
Ul [ -LHC 7 decay
us
e S
ud
e
us
e <
us
| - <
CS
[eR e Ds decay
CS
[GR ]‘r,u D, decay
[‘-urd]uu
L L L L L Ll I L L L L L Ll I
1071 1 10

A=v/Vex [TeV]

» Optimistic systematic uncertainties: 5% on ve, 10% on v, 15% on v,

» Conservative systematic uncertainties: 30% on ve, 40% on v, 50% on v,
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W/O a Dedicated Neutrino

Detector:

* High energy Muon Collider as a high energy Neutrino Collider

Could provide constraints to Non-standard Interactions that are

complementary to low-energy probes!
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SMEFT:

Flavor-conserving 4-lepton operators

+o— Two flavors (a < b=1,2,3)
E . L C; OD=6 I'l I’l' - [C’E'E]' [C‘ge]’ [Cee] _ _
= Lo+ ) 507 (Ottlaat = (£a o) (Eots)
' +. . [Oulabha = (£aTpuls) (£50"4a)
l’l'_v' [C‘g‘g]’ [C’Ee] [Ofe]aabb - (Z 0’: a)(ebauéb)
[Otelbbaa = (o7 uL5) (€S0HES)

v V: [C{{] [Ole]abba, = (ea,O'#Eb)(ebO'“ )

[Oee]aabb = (6 auea) (eboﬂueb)

e vertex corrections to the Zand W interactions with leptons:

LsMEFT D ﬁ [W“"'yaa'“(l ea +h.c] -+ \/gL +gYZ e O'M( ngf ) e
\/gL +gyZ“ Z f ap( _sonfa,

f=eyw
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(]
SMEFTO Chirality-conserving 2 lepton-2 quark operators

With lepton doublets

Without lepton doublets

”+”_ [Otglaath = (zaay.fa)(qbﬁﬂqb)

wtv (08 aath = (FaTu0ta) @50 0)
[OEu]aabb =~ (eaapea) (ugo ”‘ﬂg)

v [Otdlaass = (laTula)(dSo*dy)

[Oeqlaats = (eg0ues) (950" p)
[Oeu]aabb = (egaﬂétcz) (Ugauyg)
[Oed]aabb = (6cczaﬂég,) (dﬁff”dZ)

Chirality-Violating 2 lepton-2 quark operators

Chirality violating (I,J = 1,2, 3)

+

pu

[OEequ] 11jJ = (EJIé?)EJk (Q§a3)

+ 7J =C = ¢
H-v [Og,),u]nu = (@%vfr)ﬁjk(Q.’;‘?qu)
[Otedq) 1155 = (£7€5)(d5q%)

e vertex corrections to the Zand W interactions with leptons:

Lsmerr D (/9% + 922" ) [0, ((Tg — 55Qq) q+q°oy (_ngq 7]

q=u,d

+ [W’“LW# (Vud d B h.c.] ;
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A Dark Sector Factory? e.g. HNL

qgU, = qgU, _ — m _ -
L 37; (WILA*N +he.) — mzu (79" N + Ny*p) — U= “h (7N + Nvy)

Peiran Li, Zhen Liu, and Kun-Feng Lyu (2023)

o/|U,* (w. conj. channel)
Type Signal process Pre-selection cut (PSC)|Included
my =1 TeV
t-channel| ptp~™ — N, 20.28 pb PSC Yes
VBF |ptp~ — ptp Nuo, ~ 1 pb - No
VBF | ptyu~ — oy, N, ~ 0.1 pb - No

TABLE III. The signal rate for N, at 10 TeV. The cross section includes the charge conjugate

process.

Type Background process |0 (w. conj. channel)|Pre-selection cut (PSC)|Included
t-channel| ptp™ — Wty p, 0.214 pb PSC Yes
t-channel| ptp™ — Zptp~ 0.464 pb PSC & missing pu™ Yes
VBF |ptu™ — ptu Wtu o, 0.401 pb PSC & missing u*u~ | Yes
VBF |ptp~ — o,0,WHpp, 0.0686 pb PSC No

TABLE IV. N, background at 10 TeV. The cross section includes the charge conjugate process.
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HNL consistent with both seesaw and leptogenesis

The present and future status of heavy neutral leptons

2203.08039
1 L] ] L L L II 1
10— L
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Jo-4|ASER2 N\ N T /
/ e~
J =
/
1
o A=
106 LHeC=~# /2
o™ \‘ ‘| - _‘::j/
- W =7 FCC-he
A
1078 S _
4 1
T
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https://arxiv.org/abs/2203.08039

The Physics Case for a Neutrino Factory

D@lt@(l‘lt@][" Requiirementts: 2203.08094

*Highly segmented detectors capable of precision operation at high event rate.
*Excellent muon and electron ID capability.

*Excellent energy resolution.

A magnetized detector for charge identification. In addition, reconstruction via
spectrometry can be applied to event reconstruction as opposed to being done via
calorimetry. This is particularly important for high-energy neutrino interactions
where the outgoing muon’s momentum must be measured via spectrometry.
*Excellent particle ID.

*Neutron detection capability (with energy determination).

*A variety of nuclear targets to measure cross-sections as a function of the nuclear
target mass number A.

*Micron-scale resolution for charm and tau identification or the capability to tag

charm and taus in the final state via kinematics.
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Conclusion:

The rich physics opportunities at a NF and the need to prepare for a post-DUNE neutrino
physics program indicates that detailed studies of a neutrino factory complex, its physics reach
and detectors are once again timely and needed;

The need for a Cooling Demonstrator Facility (CDF) as part of a Muon Collider R&D
program might breathe new life into the NF concept;

We can use a dedicated neutrino detector at a high energy MC for precision measurements
on neutrino interactions (DIS x-section, weak mixing angle, etc.);

Direct dark sector searches (HNL, ALPs, light DM, erc);

We can probe very heavy particles by precisely measuring neutrino interactions using the
EFT formalism;

Unlike other probes (meson decays, ATLAS and CMS analyses, etc.) a neutrino detector has
the unique capability to identify the neutrino flavors. This is crucial complementary

information in case excesses are found elsewhere in the future;

We are NOT yet prepared to identify all the interesting things we can do!
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