

Artwork by Sandbox Studio, Chicago with Ana Kova



MInternational UON Collider Collaboration

June 19-22, 2023

#### Zahra Tabrizi

#### Neutrino Theory Network (NTN) fellow



Northwestern University

## **Outline:**

- Synergies with Neutrino Factories
- Dedicated Neutrino Detector at a MC
- MC as a High Energy Neutrino Beam
- Conclusion



#### Status of Neutrino Physics in 2023

Super-Kamiokande, Borexino, SNO



atmospheric

accelerator

MBL: Daya Bay, RENO, Double Chooz LBL: KamLAND

IceCube, Super-Kamiokande

T2K, MINOS, NOvA

 $\begin{array}{c} {}_{\rm mixing \, angles:}\\ sin^2\theta_{12} @ 4\%\\ sin^2\theta_{13} @ 3\%\\ sin^2\theta_{23} @ 3\% \end{array}$ 

mass squared differences:  $\Delta m^2_{21} @ 3\%$  $|\Delta m^2_{31}| @ 1\%$ 

Future: DUNE, T2HK , JUNO

- Increase the precision
- CP-phase?
- Mass hierarchy?

Also:

Mass scale? Dirac or Majorana? Sterile?

6/20/2023

Zahra Tabrizi, NTN fellow, Northwestern U.

### Neutrino Factories

\_\_\_\_\_\_

#### Do we still need a Neutrino Factory?

High beam luminosity + Large fiducial mass Ideal to investigate rare/new neutrino interactions

- Equal numbers of electron/muon (anti)neutrinos;
- Very high luminosity for both muon and electron flavor content;
- Well known neutrino energy spectra at tens of GeV;
- Very well determined beam intensity;

The only experiment to over constrain oscillation for 3-neutrino paradigm;
 In case of anomalies, a NF would be ideal to investigate them;

## Neutrino Factories



Given its unique beam characteristics, NF will be remarkable to explore a much wider range of new physics!

## Synergies with a Muon Collider



- Muon production, capture, and cooling would directly benefit a neutrino factory;
- The need for a Cooling Demonstrator Facility (CDF) as part of a Muon Collider R&D program might breathe new life into the nuSTORM concept;

## **IMCC** Demonstrator

Rich physics opportunities;

The need to prepare for a post-DUNE program;

# Detailed studies of a NF complex is needed





#### Oscillation at Muon Colliders? Unlikely?

At TeV energy range, the relevant baseline to see oscillation is 10<sup>6</sup> (10<sup>8</sup>) km for atmospheric (solar) oscillation parameters.

#### A neutrino detector at the moon? We are not there yet!



#### Neutrino Fixed Target Experiment at a Muon Collider



- Ideal to investigate rare/new neutrino interactions
- Search for BSM physics

#### Case 1: SM Search (Precision in Neutrino Cross Section Measurements)



FASER Collaboration, 2020

□ Currently no high energy  $\nu_e$  beam □ A lot of  $\nu_\mu$ , but not well known beam

- Well known beam, direct extraction of the x-sections with much greater precision
- DIS dominates, we can probe nucleon structure at low Bjorken x and high  $Q^2$

## Long Baseline Accelerator Experiments

• 0.1-10 GeV energy range: cross section is much more involved!



J.A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (2012)

#### Physics Case 2: Precision in Weak Mixing Angle



The Physics Case for a Neutrino Factory 2203.08094

The most precise measurement of  $\sin^2\theta_W$  using neutrino scattering, at  $\langle Q \rangle \simeq 4.5$  GeV.

Deviates from the LEP measurement at  $3\sigma$  level.

 $R^{\nu(\bar{\nu})} = \frac{\sigma(\nu(\bar{\nu})N \to \nu(\bar{\nu})X)}{\sigma(\nu(\bar{\nu})N \to \ell^{-(+)}X)} \approx g_L^2 + 2g_R^2$ 

 $\sin^2 \theta_W(\langle Q^2 \rangle = 20 \text{ GeV}^2) = 0.2277 \pm 0.0013 \pm 0.0009$ 

G. P. Zeller et al. (NuTeV), (2002)

Main uncertainty at NuTeV: Subtraction of the  $v_e$  CC contamination from the NC sample.

## How about "Heavy" New Physics?

#### **Affect Neutrino Interactions: Indirect Searches**



Observable: rate of detected events

~ (flux)×(det. cross section) × (oscillation)

#### Physics Case 3: Indirect BSM Searches (SMEFT)



compare the results with high energy colliders.

#### EFT ladder WEFT: Effective Lagrangian defined at a low scale



## FASERv-like Detector?

- Downstream of ATLAS at of 480 m: ٠
- Ideal for detecting high-energy neutrinos at LHC; ۲
- 1.1-t of tungsten material;
- Several production modes; ۲
- Pion and Kaon decays are the dominant ones; ۲
- All (anti)neutrino flavors are available;





## EFT at FASERv

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

- FASERv: colored bars
- Top: Conservative/Optimistic flux uncertainties
- Bottom: High luminosity LHC



- Neutrino detectors can identify flavor: 81 operators at FASERv
- New physics reach at multi-TeV
- Complementary or dominant constraints
  - > Results are statistics dominated:  $\nu_e \sim 1000$ ,  $\nu_\mu \sim 5000$ ,  $\nu_\tau \sim 10$
  - > Optimistic systematic uncertainties: 5% on  $\nu_e$ , 10% on  $\nu_{\mu}$ , 15% on  $\nu_{\tau}$
  - > Conservative systematic uncertainties: 30% on  $\nu_e$ , 40% on  $\nu_{\mu}$ , 50% on  $\nu_{\tau}$



## W/O a Dedicated Neutrino Detector:

• High energy Muon Collider as a high energy Neutrino Collider



Could provide constraints to Non-standard Interactions that are complementary to low-energy probes!

Talk by Ian Low at ACE

#### **SMEFT**:

#### Flavor-conserving 4-lepton operators

• vertex corrections to the Z and W interactions with leptons:

$$\begin{split} \mathcal{L}_{\text{SMEFT}} &\supset \frac{g_L}{\sqrt{2}} \left[ W^{\mu +} \overline{\nu}_a \overline{\sigma}_\mu (1 + \delta g_L^{We_d}) e_a + \text{h.c.} \right] + \sqrt{g_L^2 + g_Y^2} Z^{\mu} e_a^c \sigma_\mu \left( -s_{\theta}^2 Q_f + \delta g_R^{Ze_d} \right) \overline{e}_a^c \\ &+ \sqrt{g_L^2 + g_Y^2} Z^{\mu} \sum_{f=e,\nu} \overline{f}_a \overline{\sigma}_\mu \left( T_3^f - s_{\theta}^2 Q_f + \delta g_L^{Zf_d} \right) f_a, \end{split}$$

#### **SMEFT**:

#### Chirality-conserving 2 lepton-2 quark operators

|                                                      | With lepton doublets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Without lepton doublets                                                                                                                                                                                                                                                                                                   |              |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| $\mu^+\mu^-$<br>$\mu^\pm  u$<br>$\nu \overline{\nu}$ | $\begin{split} & [O_{\ell q}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \ell_a) (\overline{q}_b \overline{\sigma}^\mu q_b) \\ & [O_{\ell q}^{(3)}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \sigma^i \ell_a) (\overline{q}_b \overline{\sigma}^\mu \sigma^i q_b) \\ & [O_{\ell u}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \ell_a) (u_b^c \sigma^\mu \overline{u}_b^c) \\ & [O_{\ell d}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \ell_a) (d_b^c \sigma^\mu \overline{d}_b^c) \end{split}$ | $\begin{split} &[O_{eq}]_{aabb} = (e^c_a \sigma_\mu \overline{e}^c_a) (\overline{q}_b \overline{\sigma}^\mu q_b) \\ &[O_{eu}]_{aabb} = (e^c_a \sigma_\mu \overline{e}^c_a) (u^c_b \sigma^\mu \overline{u}^c_b) \\ &[O_{ed}]_{aabb} = (e^c_a \sigma_\mu \overline{e}^c_a) (d^c_b \sigma^\mu \overline{d}^c_b) \end{split}$ | $\mu^+\mu^-$ |

#### Chirality-Violating 2 lepton-2 quark operators

• vertex corrections to the Z and W interactions with leptons:

$$\begin{split} \mathcal{L}_{\text{SMEFT}} &\supset \sqrt{g_L^2 + g_Y^2} Z^{\mu} \sum_{q=u,d} \left[ \overline{q} \overline{\sigma}_{\mu} \left( (T_3^q - s_{\theta}^2 Q_q) + \delta g_L^{Zq} \right) q + q^c \sigma_{\mu} \left( -s_{\theta}^2 Q_q + \delta g_R^{Zq} \right) \overline{q}^c \right] \\ &+ \left[ W^{\mu +} \overline{u} \overline{\sigma}_{\mu} \left( V_{ud} + \delta g_L^{Wq_1} \right) d + \text{h.c.} \right]. \end{split}$$

#### A Dark Sector Factory? e.g. HNL

$$\mathcal{L} \supset \frac{gU_{\ell}}{\sqrt{2}} \left( W_{\mu} \bar{l}_{L} \gamma^{\mu} N + \text{h.c.} \right) - \frac{gU_{\ell}}{2\cos\theta_{w}} Z_{\mu} \left( \bar{\nu}_{L} \gamma^{\mu} N + \bar{N} \gamma^{\mu} \bar{\nu}_{L} \right) - U_{\ell} \frac{m_{N}}{v} h \left( \bar{\nu}_{L} N + \bar{N} \nu_{L} \right)$$

#### Peiran Li, Zhen Liu, and Kun-Feng Lyu (2023)

| Туре      | Signal process                                                                  | $\sigma/ U_{\mu} ^2$ (w. conj. channel)<br>$m_N = 1$ TeV | Pre-selection cut (PSC) | Included |
|-----------|---------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------|----------|
| t-channel | $\mu^+\mu^- \longrightarrow N_\mu ar{ u}_\mu$                                   | 20.28 pb                                                 | PSC                     | Yes      |
| VBF       | $ \mu^+ \mu^- \longrightarrow \mu^+ \mu^- N_\mu \bar{\nu}_\mu $                 | $\sim 1~{ m pb}$                                         | _                       | No       |
| VBF       | $\mu^{+}\mu^{-} \longrightarrow \bar{\nu}_{\mu}\nu_{\mu}N_{\mu}\bar{\nu}_{\mu}$ | $\sim 0.1~{ m pb}$                                       | _                       | No       |

TABLE III. The signal rate for  $N_{\mu}$  at 10 TeV. The cross section includes the charge conjugate process.

| Type      | Background process                                                     | $\sigma$ (w. conj. channel) | Pre-selection cut (PSC)    | Included |
|-----------|------------------------------------------------------------------------|-----------------------------|----------------------------|----------|
| t-channel | $\mu^+\mu^- \longrightarrow W^+\mu^- ar{ u}_\mu$                       | $0.214~{ m pb}$             | PSC                        | Yes      |
| t-channel | $\mu^+\mu^- \longrightarrow Z\mu^+\mu^-$                               | $0.464~{ m pb}$             | PSC & missing $\mu^+$      | Yes      |
| VBF       | $\mu^+\mu^- \longrightarrow \mu^+\mu^- W^+\mu^- \bar{\nu}_\mu$         | $0.401 \mathrm{\ pb}$       | PSC & missing $\mu^+\mu^-$ | Yes      |
| VBF       | $\mu^+\mu^- \longrightarrow \bar{ u}_\mu  u_\mu W^+\mu^- \bar{ u}_\mu$ | 0.0686 pb                   | PSC                        | No       |

TABLE IV.  $N_{\mu}$  background at 10 TeV. The cross section includes the charge conjugate process.

#### HNL consistent with both seesaw and leptogenesis

 $10^{-2}$ LHC CODEX FCC-hl ILC FASER2  $10^{-4}$  $\mu\mu$  3 TeV,  $10^{-6}$ LH  $\mu\mu \ 10 \ \text{TeV}$  $U^2$ ILC DV FCC-he NA62  $10^{-8}$ ATHUS FCC-hh DV SHiP FCC-hh- $10^{-10}$  DUNE CEPC **Baryon Asymmetry** FCC-ee type-I seesaw of the Universe  $10^{-12}$  $10^{3}$  $10^0$  $10^{2}$  $10^{1}$  $10^{-1}$  $10^{4}$  $M \; [\text{GeV}]$ 

The present and future status of heavy neutral leptons 2203.08039

#### **Detector Requirements:**

•Highly segmented detectors capable of precision operation at high event rate.

•Excellent muon and electron ID capability.

•Excellent energy resolution.

A magnetized detector for charge identification. In addition, reconstruction via spectrometry can be applied to event reconstruction as opposed to being done via calorimetry. This is particularly important for high-energy neutrino interactions where the outgoing muon's momentum must be measured via spectrometry.
Excellent particle ID.

•Neutron detection capability (with energy determination).

•A variety of nuclear targets to measure cross-sections as a function of the nuclear target mass number A.

•Micron-scale resolution for charm and tau identification or the capability to tag charm and taus in the final state via kinematics.

#### Conclusion:

- The rich physics opportunities at a NF and the need to prepare for a post-DUNE neutrino physics program indicates that detailed studies of a neutrino factory complex, its physics reach and detectors are once again timely and needed;
- The need for a Cooling Demonstrator Facility (CDF) as part of a Muon Collider R&D program might breathe new life into the NF concept;
- We can use a dedicated neutrino detector at a high energy MC for precision measurements on neutrino interactions (DIS x-section, weak mixing angle, etc.);
- Direct dark sector searches (HNL, ALPs, light DM, erc);
- We can probe very heavy particles by precisely measuring neutrino interactions using the EFT formalism;
- Unlike other probes (meson decays, ATLAS and CMS analyses, etc.) a neutrino detector has the unique capability to identify the neutrino flavors. This is crucial complementary information in case excesses are found elsewhere in the future;
- We are NOT yet prepared to identify all the interesting things we can do!



# Thanks for your attention