

aboration

Updates on the Rapid Cycling Synchrotrons studies

<u>Fabian Batsch</u>, Rama Calaga, Heiko Damerau, Ivan Karpov

<u>Acknowledgements</u>: David Amorim, Scott Berg, Fulvio Boattini, Luca Bottura, Christian Carli, Antoine Chancé, Alexej Grudiev, Elias Metral, Ursula Van Rienen, Daniel Schulte, Sosoho-Abasi Udongwo

Funded by the European Union under Grant Agreement n.101094300

IMCC Annual Meeting, Orsay, 21/6/2023

Outline

- Design aspects of the Rapid Cycling Synchrotrons
- Magnets and RF layout
- Synchrotron tune mitigation
- Nonlinear ramping functions
- Summary and outlook on longitudinal tracking studies

- - - -

Reminder on design baselines

- Base for the work is the US <u>Muon Accelerator Program</u> (MAP)
- High energy complex consist of a chain of rapid cycling synchrotrons (RCS)

Reminder on design baselines

- Design oriented on reaching the performance parameter [webpage]
- The relevant target parameters are: [presentation by D. Schulte]

Parameter	Unit	3 TeV	10 TeV	
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	Repetition rate of 5 Hz \checkmark \rightarrow RCS
Ν	1012	2.2	1.8	
f _r	Hz	5	5	
 (average)	Т	7	10.5	
ε _L (norm, 1σ _z σ _E)	MeV m	7.5	7.5	
σ _E / E	%	0.1	0.1	
σ _z	mm	5	1.5	
		F. Batso	h	

• Chain of rapid cycling synchrotrons, counter-rotating μ^+/μ^- beams $\rightarrow 60 \text{ GeV} \rightarrow 314 \text{ GeV} \rightarrow 750 \text{ GeV} \rightarrow 1.5 \text{ TeV} \rightarrow 5 \text{ TeV}$

- Hybrid RCSs have interleaved normal conducting (NC) and superconducting (SC) magnets, see also talks by A. Chancé [talk1, talk2]
- This would be the first hybrid RCSs in the world!

Hybrid RCS magnet layout

- SC magnets provide <u>high average</u> *B*, but not fast ramping → fixed-field, $B_{sc} = 10$ T
- NC magnets require fast ramping within $B_{nc} = \pm 1.8$ T Adopted achieved parameters: below saturation of both technologies
- Beam orbit not constant during acceleration
 - → Orbit length and $f_{rev} \neq const.$
 - \rightarrow f_{RF} tuning for cavities

Parameters and tools: General parameter

1703.0 10700 1.79 0.628 1070.2 3975.7 2.34

TESLA 1300 46367 28.04 35.7 0.45 round 50 9-cell 536 30 2.9 4.0 9.0 45 331.72 0.025 0.079 1.40 1.77

Detailed parameter table: [link]

	RCS1 → 314 GeV	RCS2 → 750GeV	RCS3 → 1.5TeV	1) 13 Basic data 13 Particles 14 Costs 17 Type	Symbol	Unit MC	Value Details Value Details P RCS	Value Detr	Stage 3 lails Value µ hybrid RCS
Circumference, 2πR [m]	5990	5590	10700	10 10 Dynamics 21 Acceleration time 22 Injection energy 22 Ejection energy		(ms) (MeV)/u (MeV)/u	0.34 63000 313830 defined by	1.09704595 313830 7 750000	2.3 75000 150000
Energy factor, $E_{\rm ei}/E_{\rm inj}$	5.0	2.4	2.0	24 Energy ratio 24 Momentum at e 25 Momentum at e 26 Number of turns 27 Planned Survival rate	p/c p/c n _{set}	MeV/c MeV/c	4,98 63106 313935 17 0.9	2.39 313935 750106 55 0.9	2.0 75010 150010 6 0.1
Repetition rate, f _{rep} [Hz]	5 (asym.)	5 (asym.)	5 (asym.)	Total survival rate Accel, Gradient, linear for survival Required energy gain per turn Transition gamma	N _g /N _g G ME	[MV/m] [MeV]	0.9 2.44 14755 20.41	0.81 1.33 7930 20.41	0.72 1.0 1136
Number of bunches	1μ+, 1μ ⁻	1μ⁺, 1μ⁻	1μ+, 1μ ⁻	Injection relativistic mass factor Ejection relativistic mass factor Injection v/c Ejection v/c Ejection v/c	T _{ni} T _n P _{ni} P _{ni}	- - %	597 2971 0.9999986 0.99999943	2971 7099 0.99999943 0.999999901	709 1419 0.999999990 0.999999997
Bunch population	>2.5E12	>2.3E12	2.2E12	a Parameter Classical RCS a Radius a Circumference a Circumference Ratio a Pack fraction a Pack fraction b Rend radius b Rend r	R 2xR R _{pi} /R, ?	(m) (m) -	953.3 5990 0.61	953.3 5990 1 0.61	1703 1070 1.7 0.62
Survival rate per ring	90%	90%	90%	41 Tot, straight section length 45 Injection bending field (average) 75 RF 76 Systems 77 Main RF frequency	L _w B _m	(m) (T)	2334.7 0.36 TESLA 1300	2335.7 1.80 TESLA 1300	3975. 2.3 TESL/ 130
Acceleration time, t_{acc} [ms]	0.34	1.04	2.37	70 Harmonic number 70 Revolution frequency ej 80 Revolution period 81 Max RF voltage 82 Max RF power	h f _{or} Trev V _a P _a	[kHz] [jus] [GV] [MW]	25957 50.08 20.0 20.87	25957 50.08 20.0 11.22	4636 28.0 35. 16.0
Number of turns	17	55	66	83 PCF Hilling Tactor 64 Number RF stations 65 Cavities 67 Peak Impedance 68 Gradient in cavity	? ΔΕ/L	[Ω]	0.4 Around 50 9-cell 696 30	0.4 Around 50 9-cell 374 30	0.45 Around 50 9-cel 538
Energy gain per turn, ΔE [GeV]	14.8	7.9	11.4	Average energy gain per total straight Accelerating field per total straight Accelerating field gradient, with FF Stable phase Conversion factor mm grad – eVs	ΔΕ/L ΔΕ/L Φ ₁	[MeV/m] [MeV/m] [MV/m] [*] Vsimm mra	6.3 8.9 22.3 45 69.40	3.4 4.8 12.0 45 165.86	2.1 4.1 9.1 41 331.7
Acc. gradient for survival [MV/m]	2.4	1.3	1.1	Composition with the C(B) = 402) Composition with the C(B) = 402) Completion bucket area More a composition bucket area Bucket area reduction factor Horizontal betafron tune		evs evs evs	0.0297.5 Mey m 0.079 0.62 1.37 0.172	0.025 0.079 1.01 1.56 0.172	0.025 0.079 1.40 1.97 0.172
Acc. field in RF cavity [MV/m]	30 (45 optimistically)	30	30	10 Vertical betaron tune 11 Average horizontal Twiss beta 12 Average vertical Twiss beta 13 Injection synchrotron frequency 14 Ejection synchrotron frequency	Q, Bh By Case	[m] [m] [kHz] [kHz]	10 10 76.33 34.20	10 10 25.07 16.22	10 10 14.5 10.2

F. Batsch

The cavity assumption: TESLA

- High G_{acc} and strong beam loading \rightarrow SRF
- → 1.3 GHz TESLA-like cavity as assumption for muon collider RCS [Phys. Rev. ST Accel. Beams 3, 092001, 2000]
- Cavity parameter (9 cells, L=1.06 m):
 - Harmonic number h = 25957 to 46367
 - *R/Q* = 518 Ω, total *R*_s = 306 GΩ
 - Gradient of structure 30 MV/m
 - *Q*_L = 2.2e6 (for beam loading compensation with ∆f = 320 Hz, [ref]), probably value to high and to be corrected

(From design report)

Table 2: TTF cavity design parameters. ^a							
type of accelerating structure	standing wave						
accelerating mode	TM_{010} , π mode						
fundamental frequency	1300 MHz						
design gradient E_{acc}	25 MV/m						
quality factor Q_0	$> 5 \cdot 10^9$						
active length L	1.038 m						
number of cells	9						
cell-to-cell coupling	1.87 %						
iris diameter	70 mm						
geometry factor	270 Ω						
R/Q	518 Ω						
$E_{\rm peak}/E_{\rm acc}$	2.0						
$B_{\rm peak}/E_{\rm acc}$	4.26 mT/(MV/m)						
tuning range	\pm 300 kHz						
$\Delta f / \Delta L$	315 kHz/mm						
Lorentz force detuning at 25 MV/m	$\approx 600 \text{ Hz}$						
Q_{ext} of input coupler	$3 \cdot 10^{6}$						
cavity bandwidth at $Q_{\text{ext}} = 3 \cdot 10^6$	430 Hz						
RF pulse duration	$1330 \ \mu s$						
repetition rate	5 Hz						
fill time	530 µs						
beam acceleration time	800 µs						
RF power peak/average	208 kW/1.4 kW						
number of HOM couplers	2						
cavity longitudinal loss factor \mathbf{k}_{\parallel} for $\sigma_z = 0.7 \text{ mm}$	10.2 V/pC						
cavity transversal loss factor k_{\perp} for $\sigma_z = 0.7 \text{ mm}$	15.1 V/pC/m						
parasitic modes with the highest impedance : type	TM_{011}						
$\pi/9$ $(R/Q)/$ frequency	$80 \Omega/2454 \text{ MHz}$						
$2\pi/9$ $(R/Q)/$ frequency	67 Ω/2443 MHz						
bellows longitudinal loss factor \mathbf{k}_{\parallel} for $\sigma_z = 0.7 \text{ mm}$	1.54 V/pC						
bellows transversal loss factor k_{\perp} for $\sigma_z = 0.7 \text{ mm}$	1.97 V/pC/m						

Parameters and tools: General parameter

76.33 34.20

1.52

25.07 16.22

0.50

10.27

verage vert

brotron tune

Detailed parameter table: [link]

	RCS1→314 GeV	RCS2→750GeV	RCS3 → 1.5TeV	14 Basic data 19 Particles 14 Costs 17 Type	Symbol -	Unit	Stage 1 Value Detail: µ RCS	Stage 2	Details Value U hybrid RCS
Circumference, $2\pi R$ [m]	5990	5590	10700	10 Dynamics 20 Acceleration time 21 Injection energy 22 Ejection energy		(ms) [MeV]/u [MeV]/u	0.34 63000 313830 defined by	1.09704595 313830 17 750000	2.1 75000 150000
Energy factor, <i>E</i> _{ej} / <i>E</i> _{inj}	5.0	2.4	2.0	Energy ratio Momentum at e Momentum at e Momentum at e Momentum at e Planned Survival rate	E _{st} /E _{to} p/c p/c n _{tot}	MeV/c MeV/c	4.98 63106 313935 17 0.9	2.39 313935 750106 55 0.9	2.0 75010 150010 0
Repetition rate, f _{rep} [Hz]	5 (asym.)	5 (asym.)	5 (asym.)	28 Total survival rate 29 Accel, Gradient, linear for survival 30 Required energy gain per turn 21 Transition gamma	N_IN, G ME	[MV/m] [MeV]	0.9 2.44 14755 20.41	0.81 1.33 7930 20.41	0.72 1.0 1130
Number of bunches	1μ⁺, 1μ⁻	1μ⁺, 1μ⁻	1μ⁺, 1μ⁻	Injection relativistic mass factor Jection relativistic mass factor Injection v/c Ejection v/c	Υ _{n1} Υ _n β _{n1} β _{n1}	- - %	597 2971 0.9999986 0.99999943	2971 7099 0.999999943 0.999999901	0.999999993
Bunch population	>2.5E12	>2.3E12	2.2E12	a Parameter Classical RCS a Radius clicumference clicumference Ratio e Pack fraction	R 2xR B _{p1} /B ₁ ?	(m) (m) -	953.3 5990 0.61	953.3 5990 1 0.61	1763 1070 1.7 0.62
Survival rate per ring	90%	90%	90%	Bend radius Tot, straight section length Injection bending field (average) RF Systems	L., B.,	m (m) (T)	581.8 2334.7 0.36 TESLA	581.8 2335.7 1.80 TESLA	1070 3975 2.3 TESL
Acceleration time, $t_{\rm acc}$ [ms]	0.34	1.04	2.37	Main Fer requency Hammoric number Revolution frequency ej Revolution period Max RF voltage Max RF pover	h f _{err} Trev V _a P _{er}	[kHz] [jus] [GV] [MW]	25957 50.08 20.0 20.87	25957 50.08 20.0 11.22	4636 28.0 35. 16.0
Number of turns	17	55	66	s) RF Filling factor Number RF stations Courties Number of cavities Peak Impedance Courties	· · · · · · · · · · · · · · · · · · ·	[Ω]	0.4 Around 50 9-cell 696	0.4 Around 50 9-cell 374	0.4 Around 5 9-ce 53
Energy gain per turn, ΔE [GeV]	14.8	7.9	11.4	Oracrage energy gain per total straight Average energy gain per total straight Accelerating field per total straight Accelerating field gradient, with FF Stable phase Conversion factor mm mrad – eVs	ΔΕ/L ΔΕ/L ΔΕ/L ΔΕ/L	[MeV/m] [MeV/m] [MV/m] [*]	6.3 6.3 22.3 45 69.40	3.4 4.8 12.0 45 165.86	2. 4. 9. 4. 331.7
Acc. gradient for survival [MV/m]	2.4	1.3	1.1	94 Longitudinal emittance (σΕ * 4σz) 95 Longitudinal emittance (phase space area) 96 Injection bucket area 97 Ejection bucket area 98 Bucket area reduction factor	E', E', A _{nd} A _{nd}	[eVs] [eVs] [eVs] [eVs]	0.0257.5 MeV m 0.079 0.62 1.37 0.172	0.025 0.079 1.01 1.56 0.172	0.02 0.07 1.4 1.9 0.17
				99 Horizontal betatron tune 100 Vertical betatron tune	Q, Q,				

• High $\Delta E = V_{RF} \cdot cos(\phi_s) \rightarrow$ Unique RF requirements such as high synchrotron tune

Synchrotron tune and number of RF stations

LHC: Q_s=0.005

Number of synchrotron oscillations per turn proportional to $\sqrt{V_{\rm RF}}$:

$$Q_{\rm S} = \frac{\omega_{\rm S}}{\omega_0} = \sqrt{-\frac{h\eta e V_{\rm RF} \cos \phi_{\rm S}}{2\pi E \beta^2}} \propto \sqrt{V_{\rm RF} \cos \phi_{\rm S}}$$

- Stable synchrotron oscillations and phase focusing only for $Q_s << 1/\pi$ (T. Suzuki, <u>KEK Report 96-10</u>)
 - \rightarrow RCSs would exceed this limit: 0.3 < $\textit{Q}_{\rm s}$ < 1.5
 - → Several longitudinal kicks per turn for small Q_s between stations, i.e., small $Q_s/n_{\rm RF}$
 - \rightarrow Distribute RF system over $n_{\rm RF}$ sections

Synchrotron tune and number of RF stations

Why not choosing a high $n_{\rm RF}$ to fulfil $Q_{\rm s} \ll 1/\pi$?

- High $n_{\rm RF} \rightarrow$ smaller quadrupole-like oscillations caused by discrete energy steps and resulting mismatching
- BUT: higher n_{RF} results in higher construction / cooling / cryogenics and powering costs, even though the number of cavities is constant and defined by ∆E per turn, plus lattice restrictions
- \rightarrow Determine emittance growth, also as a function of $n_{\rm RF}$

Outline

- Design aspects of the Rapid Cycling Synchrotrons
- Magnets and RF layout
- Synchrotron tune mitigation
- Nonlinear ramping functions
- Summary and outlook and longitudinal studies

-1-10

Parameters and tools: General parameter

Detailed parameter table: [link]

	RCS1→314 GeV	RCS2 → 750GeV	RCS3 → 1.5TeV	1) 14 Basic data 15 Particles 16 Costs 17 Type	Symbol -	Unit MC	Stage 1 Value Detail: µ RCS	Stage 2 Value 1 µ hybrid RCS	Stage 3 Details Value µ hybrid RCS
Circumference, $2\pi R$ [m]	5990	5590	10700	10 Jynamics 20 Acceleration time 21 Injection energy 22 Ejection energy	1.0	(ms) (MeV)/u (MeV)/u	0.34 63000 313830 defined by	1.09704595 313830 750000	2.3 75000 150000
Energy factor, $E_{\rm ej}/E_{\rm inj}$	5.0	2.4	2.0	Energy ratio Momentum at e Planned Survival rate	pic pic n _{um} N _u /N _m	MeV/c MeV/c	4,98 63106 313935 17 0.9	2.39 313935 750106 55 0.9	2.0 75010 150010 6 0.
Repetition rate, f _{rep} [Hz]	5 (asym.)	5 (asym.)	5 (asym.)	Total survival rate Accel. Gradient, linear for survival Required energy gain per turn Transition gamma	K_M, G ME	[MV/m] [MeV]	0.9 2.44 14755 20.41	0.81 1.33 7930 20.41	0.72 1.0 1136
Number of bunches	1μ⁺, 1μ⁻	1μ⁺, 1μ⁻	1μ+, 1μ ⁻	Bill Injection relativistic mass factor 34 Ejection relativistic mass factor 35 Injection v/c 36 Ejection v/c 37 State	T _{el} T _s B _{el} B _s	- - 	597 2971 0.9999986 0.99999943	2971 7099 0.999999943 0.999999901	0.999999999
Bunch population	>2.5E12	>2.3E12	2.2E12	Parameter Classical RCS Readius Circumference Circumference Ratio Pack fraction Read radius Read radius	R 2xR R _{p1} /R, ?	(m) (m) -	953.3 5990 	953.3 5990 1 0.61	1703. 1070 1.7 0.62
Survival rate per ring	90%	90%	90%	4 Tot. straight section length 4 Injection bending field (average) 7 BE N Systems Main RF frequency	L _{at} B _{al}	(m) (T)	2334.7 0.36 TESLA 1300	2335.7 1.80 TESLA 1300	3975.1 2.34 TESLA 1300
Acceleration time [ms]	0.34	1.04	2.37	70 Harmonic number 70 Revolution frequency ej 80 Revolution period 81 Max RF voltage 82 Max RF power	h f _{err} Trev V _a P _{er}	[kHz] [jus] [GV] [MW]	25957 50.08 20.0 20.87	25957 50.08 20.0 11.22	4636 28.0 35.7 16.07
Number of turns		Ť	\checkmark	83 RF Filling factor Number RF stations Cavities Number of cavities Number of cavities Peak Impedance Gradient in cavity	- - - ? ΔΕ/L	- - [Ω] [MV/m]	0.4 Around 50 9-cell 696 30	0.4 Around 50 9-cell 374 30	0.45 Around 50 9-cell 538
Energy gain per turn, ΔE [GeV]		ŧ	ŧ	Average energy gain per total straight Accelerating field per total straight Accelerating field gradient, with FF Stable phase Conversion factor mm mrad – eVs	ΛΕ/L ΔΕ/L ΔΕ/L Φ,	[MeV/m] [MeV/m] [MV/m] [*] Vsimm mr#	6.3 8.9 22.3 45 69.40	3.4 4.8 12.0 45 165.86	2.5 4.0 9.0 45 331.72
Acc. gradient for survival [MV/m]	Fast ramping	within $B_{\rm nc} = \frac{1}{2}$	±1.8 T	94 Longitudinal emittance (orE) * 4oz) 95 Longitudinal emittance (phase space area) 96 Injection bucket area 97 Ejection bucket area 98 Bucket area reduction factor	E', A _{nn} A _{nn} A _{nn}	[eVs] [eVs] [eVs] [eVs]	0.0257.5 MeV m 0.079 0.62 1.37 0.172	0.025 0.079 1.01 1.56 0.172	0.025 0.079 1.40 1.97 0.172
Acc. field in RF cavity [MV/m]		↓ ↓	Ł	27. profiziontal betatron tune 100 Vertical betatron tune 101 Average horizontal Twiss beta 102 Average vertical Twiss beta 103 104 Injection synchrotron frequency 104 Effection synchrotron frequency	Q, βh βv	- [m] [m] [kHz] [kHz]	10 10 76.33 34.20	10 10 25.07 16.22	10 10 14.51 10.22
Ramp rate, Ė_{nc} [kT/s]	4199	3281	1518	16 Injection synchrotron tune Q			1.52 0.68	0.50	0.55

Fast ramping considerations

- Optimization problem between linearizing magnet ramps and installed voltage, or muon loss
- Linear ramping → constant V_{RF}
 → simplest RF solution, best for μ
- Sinusoidal ramp function → performance decrease of 50%
- → Study quasi-linear ramping by e.g. natural resonant discharge of e.g. two harmonics

Example for RCS3, no intensity effects

International UON Collider

→ Powering and ramping function optimization ongoing, combined with synchronous phase and RF voltage optimization (see <u>next</u> talk and <u>talk</u> by F. Boattini)

Acc. gradient with non-linear ramping

F. Batsch

Summary

- The muon decay brings unique challenges: fast acceleration, large voltages, high intensities, high synchronous tune, small number of turns
- Fast ramping asks for RCS, high energies for hybrid magnet structure
- Developing an integrated design with respect to magnets + RF and ramping function, but also lattice (see talks by A. Chancé)
- Large, number of RF stations, e.g. 30, to mitigate extreme synchrotron tune
- Magnet ramping and RF voltages require optimization of acceleration parameters (RF voltages, synchronous phase, acceleration time = decay)

The BLonD code

(Beam Longitudinal Dynamics code)

F. Batsch

- <u>BLonD</u>: macro-particle tracking code, developed at CERN since 2014
- Links: <u>documentation</u> and <u>github</u>
- MuC-specific to multiple RF stations
 & muon decay
- Studies of today with only one

bunch, 2nd to follow

Studies with BLonD

(Beam Longitudinal Dynamics code)

- Using the <u>BLonD</u> code to observe effects of
 - Synchrotron tune Q_s
 - Choice of synchronous phase
 - Short-range wakefields
 - Beam loading at fundamental frequency
 - Induced HOM powers
 - Nonlinear ramping functions (RF and magnets)

