
Key4HEP migration

of the Muon Collider software

 June 20th, 2023
TORINO

(a) INFN Torino (Italy) (b) CERN (Switzerland)

current status and future plans

N. Bartosik (a, b)

for the Muon Collider Physics and Detector Group

IMCC Annual Meeting

https://indico.cern.ch/event/1197844/
https://agenda.infn.it/event/34600/

Nazar Bartosik Key4HEP migration of the Muon Collider software 2

Introduction: need for change

Current software framework served us well to kick-start our full-simulation studies

↳	 most components reused from the CLIC experiment + several developments on top

In the meantime a new software stack has emerged → 
that is now used by several experiments 
	 	 	 	 	 (ILC, CLIC, FCC, CEPC)

By adopting Key4hep we can benefit from developments by other experiments 
with less maintenance on our side required to keep our software up to date

↳	 existing HEP tools are evolving + new ones are appearing

• Particle Flow: PandoraPFA → Pandora SDK → k4Pandora;

• Clustering: CLUE → k4Clue;

• ROOT DataFrames: support being added to the Key4hep data model; 

	

Key4hep  
turnkey software for future colliders

• more modern and future-proof tools

• larger pool of users and developers

https://key4hep.github.io/key4hep-doc/setup-and-getting-started/README.html

Nazar Bartosik Key4HEP migration of the Muon Collider software 3

Muon Colider software: current stack

The main components of our current software stack:

1. 	 	 	 	 → 	event-data model [LCIO::SimCalorimeterHit, ... stored in *.slcio files]

2. 	 	 	 	 → 	flexible geometry-description language + interface with Geant4

3. 	 	 	 	 → 	framework for simulation components + chaining them together via *.xml files

4. 	 	 	 	 → 	collection of scripts for putting all the software together + all the dependencies 
	 	 	 	 	

The two main methods for distributing our software:

1. Local install	 	 → 	a set of instructions to install the software on a specific machine 
	 	 	 	 	 	 with full control over each component's code → best for development

2. Container		 	 → 	download and run on any machine via Docker/Singularity/Apptainer 
	 	 	 	 	 	 with limited possibility to modify the code → best for analysis

LCIO

DD4hep

Marlin

Local install

Container

ILCSoft

Nazar Bartosik Key4HEP migration of the Muon Collider software

DONE

4

Transition step: DD4hep

ILCSoft software stack:

1. 	 	 	 	

2. 	 	 	 	

3. 	 	 	 	

4. 	 	 	

LCIO

DD4hep

Marlin

We both use DD4hep for detector-geometry description

↳	 no changes needed on our side

ILCSoft Spack

Key4hep software stack:

EDM4hep

DD4hep

Gaudi

Nazar Bartosik Key4HEP migration of the Muon Collider software

DONE

5

Transition step: Spack

ILCSoft software stack:

1. 	 	 	 	

2. 	 	 	 	

3. 	 	 	 	

4. 	 	 	

LCIO

DD4hep

Marlin

The latest release 2.8 can now be installed with two recipes: for ILCSoft and for Spack

Corresponding Docker images are also available for both variants

↳	 mechanism for code modification under Docker is different in each case

ILCSoft Spack

Key4hep software stack:

EDM4hep

DD4hep

Gaudi

hand-made set of installation scripts  
used only by us (inherited from CLIC)

advanced package manager  
used in research and industry

Nazar Bartosik Key4HEP migration of the Muon Collider software

IN PROGRESS

6

Transition step: Gaudi

ILCSoft software stack:

1. 	 	 	 	

2. 	 	 	 	

3. 	 	 	 	

4. 	 	 	

LCIO

Marlin

Gaudi has a Marlin-wrapper package → only configuration files have to be adapted (no code changes)

ILCSoft Spack

Key4hep software stack:

EDM4hep

Gaudi

DD4hep DD4hep

XML config Bash script+ Python config

configured via XML

NO multithreading support

configured via Python

built with multithreading in mind

→ short term

Nazar Bartosik Key4HEP migration of the Muon Collider software

TO BE DONE

7

Transition step: EDM4hep

ILCSoft software stack:

1. 	 	 	 	

2. 	 	 	 	

3. 	 	 	 	

4. 	 	 	

LCIO

All EDM4hep data classes defined in a single YAML file: edm4hep.yaml → generates actual C++ code

Switching from LCIO → EDM4hep will change input for all our simulation code

↳	 each processor has to be adapted to the new data format → substantial amount of work

ILCSoft Spack

Key4hep software stack:

EDM4hep

DD4hep DD4hep

→ long term

Marlin Gaudi

used only by us → no other maintainers

NO multithreading support

used and maintained by other experiments

built with multithreading in mind

https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml

Nazar Bartosik Key4HEP migration of the Muon Collider software 8

Event data model: transition plan

On-the-fly EDM4hep ↔ LCIO conversion is available 
using EDM4hep2LCIO module developed for CLIC

Beam Induced Background in a single event ▶ 
simulated in GEANT4 → 120M SimHits

↳	 enormous amount of data to be processed 
	 ~25 GB (SimHits) + ~10 GB (RecHits) of RAM

We can't afford in-memory conversion of all SimHits 
but can be feasible for filtered digitized RecHits

↳	 transition to EDM4hep must happen in one step 
	 for all the code taking SimHits as input: BIB overlay + digitisers

Collection name # of elements
ECalBarrelCollection 52.219.721

ECalEndcapCollection 11.489.880

HCalBarrelCollection 20.657.110

HCalEndcapCollection 15.296.598

HCalRingCollection 1.858.377

InnerTrackerBarrelCollection 2.839.607

InnerTrackerEndcapCollection 2.553.195

OuterTrackerBarrelCollection 5.111.755

OuterTrackerEndcapCollection 3.386.256

VertexBarrelCollection 2.816.752

VertexEndcapCollection 2.135.425

YokeBarrelCollection 273

YokeEndcapCollection 35.267

TOTAL 120.400.216

Si
mC

al
or

im
et

er
Hi

t
Si

mT
ra

ck
er

Hi
t

Nazar Bartosik Key4HEP migration of the Muon Collider software 9

Release distribution: CVMFS

A 3rd distribution method established for our software stack:	 CMVFS (CERN Virtual Machine File System)

↳	 all the software deployed under a dedicated repository: 	 /cvmfs/muoncollider.cern.ch/

Makes software readily available on any machine with CVMFS configured (e.g. lxplus9.cern.ch) 
and compatible OS: Alma Linux 9 (long-term support by CERN till 2035)

↳	 to activate release 2.8 → source /cvmfs/muoncollider.cern.ch/release/2.8/setup.sh

Modifying any part of the release code + adding a new package is fairly straighforward 
using dedicated Spack functionality: spack develop <package>; spack install

Adopting now the release strategy of Key4hep community

• common packages 
as upstream installations

• stable releases 
built every few months

• nightly releases 
built every night from the latest code

Expecting CVMFS installations to be the primary method for using our software 
keeping support for local installations + containers

https://cernvm.cern.ch/fs/

Nazar Bartosik Key4HEP migration of the Muon Collider software 10

Release automation: using CERN resources

Several computing resources at CERN have been recently established for Muon Collider 
to automate our software-related tasks

1. CVMFS repository:		 /cvmfs/muoncollider.cern.ch/

• to store our software for use by the whole collaboration

2. GitLab group: 	 	 	 https://gitlab.cern.ch/muon-collider

• Docker image registry with web GUI

• repository with deployment pipelines: mucoll-deploy 
↳		 running on the dedicated GitLab Runner machines

3. OpenStack project: 	 Muon Collider Software

• dedicated Virtual Machines to run the lengthy automation tasks set up as GitLab Runners

• deployment of releases to CVMFS (stable + nightly builds)

• building of Docker images + conversion to Singularity/Apptainer images

• running release validation workflows

http://muoncollider.cern.ch/
https://gitlab.cern.ch/muon-collider
https://gitlab.cern.ch/muon-collider/mucoll-deploy

Nazar Bartosik Key4HEP migration of the Muon Collider software 11

Release validation: work in progress

Adopting more frequent release-deployment cycle  
requires a reliable validation workflow  
to minimise probability of unintented changes

All relevant code organised 
under a single repository: 	 mucoll-benchmarks

Each stage from generation to plotting has baseline 
configuration files and scripts

↳	 referenced and overriden by workflow-specific 
	 scripts → chained in mucoll-deploy pipelines

List of workflows will expand over time 
adding generation of signal and BIB samples

Will serve as a practial example of using our software

|-- generation/

| |-- bib/

| | |-- fluka_to_slcio.py

| | |-- mars_to_slcio.py

| |-- pgun/

| | |-- pgun_to_lcio.py

| `-- signal/

| `-- mumu_H_bb_3TeV.sin

|-- simulation/

| `-- steer_sim.py

|-- reconstruction/

| |-- steer_reco.xml

| `-- subconfigs/

| |-- overlay.xml

| |-- digi_trk.xml

| |-- digi_cal.xml

| |-- reco_trk.xml

|-- analysis/

| |-- lctuple_drawer.py

| |-- mcp/

| | `-- lctuple.xml

| |-- sim/

| | |-- lctuple.xml

| | |-- trk_hit_mcp.py

| | `-- cal_hit_mcp.py

|-- plotting/

| `-- histo_drawer.py

`-- workflows/

 |-- relval/

 | |-- pgun_reco.sh

 | |-- Hbb_reco.sh

 | `-- pgun_bib_reco.sh

 `-- bib_production/

 |-- fluka_3TeV.sh

 `-- fluka_10TeV.sh

reference configurations 
for individual stages

release validation 
workflow

BIB production 
workflow

https://github.com/MuonColliderSoft/mucoll-benchmarks
https://gitlab.cern.ch/muon-collider/mucoll-deploy

Nazar Bartosik Key4HEP migration of the Muon Collider software 12

Ongoing activities

You can get an even more practical introduction to our software at the upcoming 
 MuCol: training on detector design and physics performance tools at CERN (July 5-6, 2023)

↳	 will also include a hands-on session of using the latest release

Everyone is welcome to register: https://indico.cern.ch/event/1277924/

First steps towards adopting the EDM4hep data model have started

A summer student at CERN adapting some generation-stage scripts to EDM4hep output format

↳	 boosted progress on implementation of Python interfaces to EDM4hep

Next step 
↳ 	 implement BIB-overlay process as a native Gaudi module with EDM4hep input/output

Expecting more Key4hep-oriented developments soon: interface to ACTS, Gaudi-based digitisers, etc.

https://indico.cern.ch/event/1277924/

Nazar Bartosik Key4HEP migration of the Muon Collider software 13

Summary

Key4hep has a number of advantages for out simulation workflow 
better performance and usability, larger developer community, more future proof

The easy part of Key4hep migration is done 
↳	 Spack package management

We use CERN computing infrastructure to improve usability and stability of our software 
building and validating on CERN machines + deployment to CVMFS

Started the 1st stage of migration to EDM4hep data model 
generation → BIB overlay → digitisation → reconstruction

Key4hep community equally interested in us joining the club 
↳	 invited to share our experience and plans at CEPC workshop 
	 	 	 	 	 	 	 	 	 	 	 	 	 ↳	 adopted Key4hep a while ago

Nazar Bartosik Key4HEP migration of the Muon Collider software 14

Backup

BACKUP

Nazar Bartosik Key4HEP migration of the Muon Collider software 15

Event data model: transition plan

The general workflow for Release Validation

INPUT and/or CONFIG PROCESS OUTPUT
RelVal repo. release RelVal machine

*.root ← TH1

ANALYSIS
RelVal repo.

RelVal machine
PLOTTING

RelVal repo.

*.pdf ← plots
RelVal machineRELEASE  

REPOSITORY

step 1
INPUT and/or CONFIG PROCESS

RelVal repo. release

step 2

VALIDATION  
REPOSITORY

Versions synchronised with the release repository

Nazar Bartosik Key4HEP migration of the Muon Collider software 16

Event data model: transition plan

We need to modify several components of our simulation chain → good candidates for the 1st transition

1. Overlay 
dynamic mixing of small batches 
from FLUKA BIB simulation

2. Digitisation 
TRK:	realistic treatment of timing 
CAL:	more efficient class structure 
+ new detectors: CRILIN, MPGD

3. Track reconstruction 
parallel processing 
of multiple slices in ϕ

We can start with Overlay processor 
working only with EDM4hep SimHits

↳	 making it with optimised I/O and multithreaded

geometry GEANT4 SimHits> > > SIM_sig.slcio

SIGNAL

geometry GEANT4 SimHits> > > SIM_bib_1.slcio

BIB
parallel jobs

SIM_bib_2.slcio
SIM_bib_8.slcio

Digitization<

Jet clustering

Track reco.

RecHits

PFlow obj.

Particle Flow

Overlay

1 event

1 event
SIGNAL

BIB

Signal + BIB

⨉ 1

⨉ N events

⨉ N events

Nazar Bartosik Key4HEP migration of the Muon Collider software 17

Data-model optimisation: CAL hits

SimCalorimeterHit in EDM4hep 
identical to LCIO implemenation

• SimHit: 32 bytes

• Contribution: 32 bytes

#------------- CaloHitContribution

edm4hep::CaloHitContribution:

 Members:

 - int32_t PDG // PDG code of the particle contributing to the shower

 - float energy // energy in [GeV] of the this contribution

 - float time // time in [ns] of this contribution

 - edm4hep::Vector3f stepPosition // position of this energy deposition (step) [mm]

 OneToOneRelations:

 - edm4hep::MCParticle particle // primary MCParticle that caused the shower

#------------- SimCalorimeterHit

edm4hep::SimCalorimeterHit:

 Members:

 - uint64_t cellID // ID of the sensor that created this hit

 - float energy // energy of the hit in [GeV]

 - edm4hep::Vector3f position // position of the hit in world coordinates in [mm]

 OneToManyRelations:

 - edm4hep::CaloHitContribution contributions // MC step contribution - parallel to particle

100M objects stored on disk + read into RAM + processed by CPU in every event during Overlay

↳	 on average 10 contributions / SimCalorimeterHit → 354 B/hit

We can save a lot of memory by removing redundant and non-critical information: 88 B/hit (25%)

• SimCalorimeterHit::position → we already know it from cellID

• CaloHitContribution::stepPosition → exact position within a cell is irrelevant for digitization

Nazar Bartosik Key4HEP migration of the Muon Collider software 18

Tracking optimisation: ϕ slicing

The power of splitting Tracker hits in smaller subsets has been demonstrated by Massimo long ago

↳	 less input hits in a single subset → much less combinatoriscs for track reconstruction

Splitting in polar angle might not be optimal 
BIB density is not uniform in Θ

CMS Phase-II Tracker will be split into 8 octants  
for fast tigger-level track reconstruction

We should integrate this approach in our workflow 
making it a default taking advantage of parallelization in Gaudi

• Overlay: adding BIB hits to every Tracker hit collection as we do now

• Splitting: split each Tracker hit collection in ϕ sectors

• Digitization: run digitization of each ϕ sector in parallel [lin. speed-up]

• Filtering:	 stub matching in each ϕ sector in parallel [lin. speed-up]

• Track reconstruction: 	 run ACTS tracking in each sector independently [exp. speed-up] 

	 	 	 	 	 	 	 + maybe apply splitting in Θ internally at the level of a processor

