

Beam Induced Background studies at $\sqrt{s} = 3 TeV$

D. Calzolari , L. Castelli*, F. Collamati, A. Lechner, D. Lucchesi

*speaker

Outline

Goal of the study

- Objectives
- Previous studies
- Fluka simulation
 - Geometry
 - Simulation set up

- Beam Induced Background
 - Particle distribution
 - Energy Spectrum
 - Muon Decay position
 - Arrival Time
- Next Steps

Goal of the study

- The MAP design[1] of $\sqrt{s} = 3 TeV$ Muon Collider is used with the nozzle optimized for $\sqrt{s} = 1.5 TeV$
- The final goal is to optimize the IR at $\sqrt{s} = 3 TeV$ to maximizing the detector acceptance while keeping
 - the BIB at manageable levels

 5σ beam envelop at IR and final focusing magnets aperture[2]

[5]

Quick recall of previous BIB studies

- MAP collaboration studies at $\sqrt{a} = 1 E T_{0} V_{0} using MAPS[2]$
 - $\sqrt{s} = 1.5 \text{ TeV}$ using MARS[3]
- IMCC studies at $\sqrt{s} = 1.5 \text{ TeV}$ using FLUKA[4]
- Comparison between the two simulations
- Preliminary studies at $\sqrt{s} = 3 \text{ TeV}$

TIPP 2011 - Technology and Instrumentation in Particle Physics 2011

Detector Backgrounds at Muon Colliders#

N.V. Mokhov *, S.I. Striganov

Fermilab, Batavia, IL 60510, USA

Advanced assessment of beam-induced background at a muon collider

F. Collamati,^{*a*} C. Curatolo,^{*b*,*f*,*} D. Lucchesi,^{*b*} A. Mereghetti,^{*c*} N. Mokhov,^{*d*} M. Palmer^{*e*} and P. Sala^{*f*}

^aINFN Sezione di Roma, Roma, Italy

^bUniversity of Padova and INFN Sezione di Padova, Padova, Italy

^cCERN, Geneva, Switzerland, currently at Fondazione CNAO, Pavia, Italy

^dFermilab, Batavia, Illinois, U.S.A.

^eBrookhaven National Laboratory, Upton, New York, U.S.A.

^f INFN Sezione di Milano, Milano, Italy

Geometry at $\sqrt{s} = 3 TeV$

• Muon Collider machine generated with FLUKA LineBuilder[6] up to $\pm 100 m$ from the

Geometry at $\sqrt{s} = 3 TeV$

• Muon Collider machine generated with FLUKA LineBuilder up to $\pm 100 m$ from the IP

Nozzle at $\sqrt{s} = 3 TeV$

Original nozzle optimized by MAP

for $\sqrt{s} = 1.5 TeV$

- Tungsten (W) cone with a borated polyethylene (BCH2) coat
- Angular opening:
 - 1) 10° closest to the IP
 - **2)** 5° starting from $z = 100 \ cm$

Simulation setup

• Generated one beam of μ^+

decays within **55** *m* from the IP

- Energy threshold for particles production fixed at 100 keV
- Particles which enters the detector area are scored
- Detector assumed a black box

BIB composition

- Expected $1.18 \cdot 10^7$ decays (in the last 55 m) per bunch crossing
- $6.4 \cdot 10^9$ particles per bunch crossing in the

detector

Particle	Distribution
Neutron	59.8 %
Photon	39.1 %
Electron/positron	1.1 %
Muons and Hadrons	<1 %

BIB Particles

- Most of BIB particles enter in the detector area from the left nozzle
- A non-negligible fraction comes from the left-side, suggesting that more shielding is needed

BIB Particles spectrum: neutron

Neutron dominant component at very low energies

BIB Particles spectrum: photon

Photon spectrum tails arrive up to 200 MeV

BIB Particles spectrum: e^+/e^-

• e^+/e^- components have low energy spectrum

BIB Arrival Time

Significant fraction of BIB particles can be discarded by applying time cuts

Muon decay position

BEND

1000

2000

3000

abs(z) [cm]

5000

15

4000

0.0

- Decay position of muons which cause BIB particles in the detector
- Highest contribute from the region *z* ∈ [750, 1750] *cm*
- Cumulative plot suggest that further z should be considered

Muon decay position

- The **total energy** (orange), of the BIB particle, defined as $E_z = \sum_i E_{zi}$, with
 - $i \rightarrow i$ -th BIB particle
 - z → decay position of the muon which generated the BIB particle
- Muon decay position (blue histogram)
- No significant correlation are enlightened

Conclusion and next steps

- The results obtained with the new simulation agree with preliminary study performed with a different set up
- Next steps:
 - Simulating BIB sample with two beams and study the effect on the detector
 - 2) Optimize the $\sqrt{s} = 3 TeV$ nozzle design. Help need to optimize the IR lattice.

Thank you for the attention

References

- [1] Y. Alexahin, E. Gianfelice-Wendt, A 3-TeV MUON COLLIDER LATTICE DESIGN, <u>Insiperhep.net</u>
- [2] Y. Alexahin, E. Gianfelice-Wendt and V. Kapin, MUON COLLIDER LATTICE CONCEPTS, lopscience.iop.org
- [3] N.V. Mokhov, S.I. Striganov, DETECTOR BACKGROUND AT MUON COLLIDERS, <u>Arxiv.org</u>
- [4] F. Collamati, C. Curatolo et al., ADVANCED ASSESSMENT OF BEAM INDUCED BACKGROUND AT A MUON COLLIDER, <u>Arxiv.org</u>
- [5] M. Casarsa, COMPARISONS OF BIB AT DIFFERENT ENERGIES, <u>Indico.fnal.gov</u>
- [6] THE FLUKA LINEBUILDER, <u>FlukaCern</u>

Beam Parameters

Table 5. Muon collider design parameters

Parameter	Higgs Factory		High Energy Muon Colliders		
Collision energy, TeV	0.126 ^{a)}	0.126 ^{b)}	1.5	3.0	6.0 [*]
Repetition rate, Hz	30	15	15	12	6
Average luminosity / IP, 10 ³⁴ /cm ² /s	0.0017	0.008	1.25	4.6	11
Number of IPs	1	1	2	2	2
Circumference, km	0.3	0.3	2.5	4.34	6
β*, cm	3.3	1.7	1	0.5	0.3
Momentum compaction factor α_c	0.079	0.079	$-1.3\cdot10^{-5}$	$-0.5 \cdot 10^{-5}$	$-0.3\cdot10^{-5}$
Normalized emittance, π ·mm·mrad	400	200	25	25	25
Momentum spread, %	0.003	0.004	0.1	0.1	0.083
Bunch length, cm	5.6	6.3	1	0.5	0.3
Number of muons / bunch, 1012	2	4	2	2	2
Number of bunches / beam	1	1	1	1	1
Beam-beam parameter / IP	0.005	0.02	0.09	0.09	0.09
RF frequency, GHz	0.2	0.2	1.3	1.3	1.3
RF voltage, MV	0.1	0.1	12	50	150

21

*The 6 TeV ring design is not completed yet, the numbers are a projection.

Energy deposition and Dose

Particle Fluence

