Triggering and DAQ for a Future Muon Collider Experiment

Isobel Ojalvo Assistant Professor, Princeton University

Review of trigger systems at the LHC

Considerations for a Muon Collider Experiment

Future Technologies and R&D

Going Forward

Triggering at the LHC

At $L = 1-2x10^{34} \text{ cm}^{-2}\text{s}^{-1}$

- 40 MHz collision rate
- <40> collisions/bunch crossing
- Higgs: ~0.1 Hz, H4I: 0.1 mHz
- Output data size 5 MB/event

CMS and ATLAS process and selects events in stages

- "First Stage" Hardware Triggers with partial detector readout
 - reduce 40 MHz to ~100 kHz
- "Higher Stage" Software Trigger with full detector readout
 - reduce ~100kHz to ~1kHz
 - Tracks fully reconstructed

LHCb and ALICE

- Triggerless readout systems
 - Both have lower luminosity and high purity of 'interesting' physics
 - ALICE has a lower crossing rate (600 Pb filled compared to 3k p filled bunches per train

LHCb Experiment

For **Run-3 LHCb removed the hardware trigger** and moved to a streaming approach

- Expecting to take 50 fb-1 of data for Run-3 (CMS/ATLAS expect ~300 fb-1)
- Run at 32 TB/s

Use "real-time" analysis to reconstruct objects

- Reduce data from 30 MHz to 1 MHz at HLT1
- Utilize GPU co-processors (required adoption of CUDA)
- Real time calibration of detectors
 - Requires updating calibration constants every run for some (but not all) subdetectors

• Full detector Reconstruction performed at HLT2

ALICE Experiment

100 GB/9

ALICE Experiment

Pb-pb collisions at 6x10²⁷ cm⁻²s⁻¹, collision rate of 50 kHz

- Each collisions is shipped to online systems
- First undergo Synchronous Processing (FPGA based reconstruction)
 - Data compressed by storing space point coordinates as residuals to tracks to reduce the entropy and remove hits not attached to physics tracks - 20x compression
 - Possible loss of information if tracks reconstructed incorrectly
 - Detector Calibration
 - Full TPC tracking
- Next undergo Asynchronous
 Processing
 - (GPU based reconstruction)
 - Full reconstruction, processing, all detectors

35x Data Reduction

Phase-2 Trigger for CMS

Based primarily on Xilinx Ultrascale+ FPGAs and 25 GB/s optical links interconnected between systems

Phase-2 Trigger for CMS

Based primarily on Xilinx Ultrascale+ FPGAs and 25 GB/s optical links interconnected between systems

Physics Requirements for a Muon Collider

Consider the Physics we hope to access at a 10 TeV Muon Collider:

Assume a 10kHz crossing rate

- Higgs+X production at 10 TeV is expected to have a rate of <0.1 Hz
- WW production via vector boson fusion will be at 1 Hz level
 - **Signatures:** High Energy Electrons, Muons, Taus and Jets
 - Jets should be relatively high energy when originating from W or H
 - 'Easy' to differentiate these signatures from BIB
- Important to define: What could be lost from down selection of events?
 - Photons, MET, low p⊤ objects
 - Exotic signatures disappearing tracks, LLPs

Figure 4: Higgs production cross section $\sigma(h + X)$ as a fraction of a representative "total" cross section σ_{tot} for $\mu^+\mu^-$ and pp colliders. For $\mu^+\mu^-$ colliders, we compute Higgs production using the LO cross section for $\mu^+\mu^- \to h + \nu\bar{\nu}$, while the "total" cross section σ_{tot} is taken to be the rate for single electroweak boson production, which is dominated by VBF production of W, Z, h, γ at these energies. For pp colliders we take the Higgs production cross section to be the N3LO cross section for $gg \to h$ [50] presented in [51], while the "total" cross section σ_{tot} is taken to be the $pp \to b\bar{b}$ cross section computed by MCFM [52].

Considerations for a Muon Collider Experiment

For a Muon Collider Experiment:

- Targeted Luminosity 10³⁴ 10³⁵ cm⁻² s⁻¹
- 100 kHz bunch crossing rate -> new event every 10 microseconds

Major Consideration: Large Beam Induced Background

- Real time reconstruction that exploits techniques for BIB reduction in real-time
- Could benefit from "smart" detectors that have position, time, and amplitude measurement

Data rates are dominated by the tracking system and calorimeters

- Data size = Number of Hits x 32 bits per hit Hits counted in a 1 nanosecond readout window
- Data rate = Data size x Bunch Crossing Rate

Requirements for a Muon Collider Experiment

Raw calculations of data rate from S. Jindariani

Assume module size of 20 cm²

- With 50x50 microns pixel size, ~800k pixels per module with 1 ns window

- 1% occupancy, up to 8k hits per module in the inner vertex tracker
- 32 bits to encode x/y/amp/time

Data rates: 8k hits * 32 bit * 100 kHz * 2(safety factor) ~ 50 Gbps per module (20 cm2) ~10 Gbps per FE Chip (4 cm2)

- Double the rate compared to HL-LHC FE chip. Requires R&D.

- But should be achievable in ~10-20 years

More online handles should be explored: **Data compression**, some frontend clustering, p_T module based suppression (preliminary estimates indicate x5 rate reduction), real-time calibration

Where does that put the Muon Collider?

Comparing an experiment at a Muon Collider to other collider experiments

Where does that put the Muon Collider?

Comparing an experiment at a Muon Collider to other collider experiments

Schemes for Muon Collider

Different schemes explored for event size reduction

- IpGBT at the LHC provide bandwidth at up to 10GB/s for detector readout
 - Can this increase to 20GB/s in 20 years? increasing the bandwidth is a common goal across future colliders
- Estimate 10k links with 20 GB/s bandwidth
 - Less if aggressive schemes for on detector reduction utilized (pointing towards interaction point)

Fig. 15: Schematic illustration of possible ways to structure the TDAQ system. The one on the left shows an LHCb-like approach with a software Event Builder. The one on the right uses hardware boards to structure event data and pass them to the HLT farm.

14

Reconstruction Co-Processors

- LHCb, ALICE and CMS are using GPU coprocessors at HLT for LHC Run-3 (2021-2025)
 - CMS shows an average HLT processing time per event 690 ms (CPU) 397 ms (CPU+GPU)
- FPGA coprocessors are being explored by a few groups for specific applications
 - Great for ML algorithms, bandwidth constraints

LHCb

raw data

digis

clusters

doublets

raw data

Snowmass Summary of TDAQ for Future Colliders

Application of Machine Learning to DAQ systems, particularly considering co-design of hardware and software to apply ML algorithms to real-time hardware will make future experiments operationally efficient

Seek out funding opportunities from a wide variety of sources

Design TDAQ system architectures to enable more intelligent aggregation, reduction, and streaming from detectors to HLT and offline data processing

- Continue to leverage advances in industry (FPGAs, GB/s optical links, GPUs, core-processors)
- Continuoius

Crucial to develop improved readout technologies to increase data bandwidth and operate in extreme environments while fitting into the power and material budgets

 Radiation tolerance is not a typical requirement for high throughput readout in industry

ML Techniques for Reconstruction

Useful to consider updating reconstruction techniques

- Traditional tracking (Kalman Filter) algorithms scale worse than quadratically with the number of hits
- Graph-based approaches are well suited since tracking data can be naturally encoded as a graph structure
- Graph Neural Networks (GNNs) consider local information between pairs of hits to learn relationships between them in order to "connect the dots" and infer tracks
 - ML techniques typically scale linearly with the number of hits as they do not contain many interactive loops
- Note, **none of this is 'magic'**, even proof-ofprinciple, implementation is a lot of work
 - However, many public and private foundations are interested in fast ML applications, these should be leveraged for R&D

R&D: Readout Technologies

- VCSEL (Vertical cavity surface emitting laser)-based links (50GB/s) and Si-photonic links in development
- Wireless data transmission also an interesting option
 - broadcast for control and configuration of detectors without bulky copper cables

FPGAs here to stay for the foreseeable future due to ease of design, synchronous data throughput and high customizability

- Connectivity between FPGAs must go beyond PCIe gen5 bandwidth
 - Further explore CPU-FPGA hybrids
 - Will links provide the bandwidth needed for real-time detector read out?

Significant design time needed for FPGA based firmware

Continue use and development using High Level Synthesis based firmware design and GPU co-processing

Conclusions

It is far too early to make any final decisions about trigger and **DAQ** at a future experiment on a muon collider

- BUT as detectors and full-reco simulations are being developed it is important to think about **real time data reduction schemes**
 - The CMS track-trigger is an excellent example of this
 - Asking ~ 1-2 FTEs/year to embed trigger/DAQ experts with detector design and full simulation groups (this can be split up to 0.25 FTE/system)
- Also important to take note of reconstruction bottle necks and consider mitigation strategies for fast reconstruction

Be prepared to assimilate the latest computing technologies as they become available

• FPGAs and GPUs changed the way we trigger at the LHC

Identify trigger/DAQ R&D needs that are unique to collider physics

• Radiation tolerant high speed data transfer methods, what else?