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Background of this talk

A high intensity proton driver is needed for the Muon Collider.
Intensity: ~ 2 MW - Higher than existing to date.
The challenges are thus beyond those facing in the running machines to date.
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A high-energy and high-intensity SC H linac with successive charge-exchange

injection into a storage ring™* are in consideration.
(* A rapid cycling synchrotron (RCS) could also be an option)

Overview of the operational issues in a high-intensity proton driver
(J-PARC RCS) and high-energy stripping challenges are presented.
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High-power H- charge-exchange challenges

The H- charge exchange injection (CEl) is an efficient way to increase the proton
beam power with multi-turn injection into a synchrotron or storage ring.
The beam loss can be kept sufficiently lower as compared to p injection.

A stripper foil is conventionally used for an H™ stripping to proton.
However, this becomes complicated and have several following issues,
especially dealing with high-intensity beam.

e Lifetime of the stripper foil.

e Maintaining and controlling the partially stripped (H®) and unstripped
H- and their proper disposal.

e Excited state of H° and the beam loss from H?" decays outside the aperture.
e Stripped electron collections.

e Beam loss, especially uncontrolled ones caused by the foil scattering.
= An optimum transverse painting (TP) at injection is needed to minimize
foil hitting of the circulating beam during multi-turn injection.
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Overview of running high-intensity (MW class)

proton machines

@ SNS in Oak Ridge: 1.4 MW designed
& RCS at J-PARC : 1 MW designed

SNS in Oak Ringe J-PARC RCS

Type Storage ring Synchrotron
H- IS peak (mA) & <40 > 50
inj. beam power (MW) 1.4 0.133
Inj. pulse (ms) 1 0.5
H- stripping type & Multi-turn H- CEI by foil Multi-turn H- CEI by foll
stripping efficiency (%) 95% 99.7%
Ein / Eout (GeV) 1/1 04/3
Beam power (MW) 1.4* (1.5 E14/pulse) ~1** (~1E14/pulse)
SC tune shift ~0.1 ~0.15

*1.55 MW to date. Upgrading for > 2 MW (BY increasing inj. beam energy and peak current)
** ~ 1 MW to date. Demonstrated 1.5 MW potential. Studying towards 2 MW!
(By increasing injection pulse length & peak current)

® A multi-MW beam power is thus not that far!
@® A higher injection energy has a significant benefit for SC mitigation.
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Higher injection energy benefits for SC mitigation

Beam survival rate
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v’ This experimental data clearly show a significant gain from a higher
injection energy as well as excellent ability of injection painting.
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3-NBT Extraction
beam dump
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H beam energy: 0.4 GeV

@ Stripping foil thickness: 333 ug/cm?
& Stripping efficiency (p) : 99.7%
Partially stripping H° : 0.3% (0.4 kW)
Unstripped H™ : 1E-5%

SB 1~4 : Chicane bump

PBH1~4 : Hori. painting bump
PBV1~2 : Vert. painting bump




J-PARC H- stripping issues at high-intensity operation

e Unstripped H™ (Controlled)

Determine by the foil thickness and those missing the foil.

Initially negligible (1E-5%), but problems when a foil degradation occurs and using a
smaller size foil. Operational limit from the waste beam dump temperature.

e Partially stripped H? and their excited states (H%") losses (Partially uncontrolled):

HO yield depends on the foil thickness. H®" decays determined by the injection chicane design.
HO yield: 0.3% (400 W). H%" decay outside the aperture : 6W (Extreme case)

Recently chicane bump field is reduced by 20%.

At the SNS: Foil inside a magnet. Decays immediately. Loss negligible.

Otherwise > 2000 W loss could occur!

e Stripped electron collection (Controlled):
No issues so far. (SNS had problems at earlier commissioning stage)

e Foil lifetime (Controlled so far) P.K. Saha et al., PRAB 23, 082801 (2020)

Foil degradation determines the practical foil lifetime.

Temporary solution: Inserting the foil more to the beam. Foil hitting (scattering) rate increases.
At present ~1 month at 0.9 MW opr. Foil magazine can hold 15 foils.

@ Foil scattering beam losses (Partially uncontrolled):

Several sources/mechanisms. Determined by the foil thickness & size, and foils hits.

TP minimizes the foil hits.

— Single Large angle Coulomb scattering: An additional injection collimator was installed in J-PARC.
— Energy straggling, Multiple scattering, Nuclear interaction: Determined by the foil thickness.

— Foil hitting rate of the circulating beam: Minimized by the trans. inj. painting and the foil size.

- One of the main issues at J-PARC at high-intensity operation.
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Foil scattering beam loss issues

» Already achieved the designed 1 MW beam power and tested for a short time operation.

e Maximum Longitudinal and Transverse paintings (LP and TP) are applied for SC mitigation.
e The TP creates uniform beam distributions and also minimize foil hitting rate.

—> A higher TP reduced foil hitting rate, but TP area depends on the machine aperture,

lattice design, realistic machine errors and imperfections.

—> Barely reached to the design TP of 216 mm mrad. The average foil hits/proton is ~ 7.

Measured circulating
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@® Estimated beam loss at IMW: ~0.2% (0.3 kW ) << Collimator limit (4 kW)!
& However, residual radiation at the injection area caused by the uncontrolled beam
loss due to foil scattering of the circulating beam is rather high.

@ Reduction of the foil scattering beam loss is a top priority!
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Reduction of the foil scattering beam losses

- Minimize vert. inj. beam size by manipulating

vert. beta (B,) of the injection beam.
- Minimize vertical size of the stripper foil.

Circulating
beam

Stripper foil

20mm

* Minimize injection beam size
* Use a smaller size foil
=>» Reduce circulating beam hits
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Time (Us)
PK.Saha Measured foil scattering beam loss
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Optimize vert. transverse painting
w.r.t. the smaller inj. B,.

Circulating beam
(painting emittance)

Optimization of vertical painting matching

with injection beam. (y’ : -3.3 = 2.82 mrad)

- Minimize number of large amplitude particles.
=» Reduce beam loss.

Foil hitting rate (uncontrolled beam loss) 30% reduced.
The total beam loss at the injection, collimator and 1%t arc
sections are 40% reduced in average.




Latest beam loss mitigation at 1 MW

Based on numerical simulations and extensive beam £ 13 2020 1 MW org: , =8 m
studies following optimizations were implemented. = 2022 1 MW Run#90 best: i, =2.2m —
v" Minimized injection beam and the foil sizes. S 100
v" Optimized betatron tunes. = Time structure of the beam loss
v Optimized transverse and longitudinal paintings. Eﬂ 50 Comparison: 2020 & 2022
v Optimized correction of v, -2v, = -6 resonance. =
v' Reduced 3v, = 19 effect by SB' x 0.8 field 2,
(reduced K2 field intrinsic in the SB, HO* decays) v 0 5 10 IS 20

Time (ms)

& The residual beam loss is estimated to be ~0.05%.
—> The residual beam loss is dominated by the foil scattering.

& We will try to further reducing the foil size.
—> Unstripped H- beam power at the waster beam dump is an issue.

@ To eliminate foil scattering beam losses and foil lifetime issues,
we are developing laser stripping of H- charge-exchange injection.
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H- stripping challenges at high-energy & high-intensity

MC case: 5-10 GeV, 2 MW

Earlier studies: Project-X design study at Fermilab (HB 2008, 2010 WS, David Johnson)

H- energy : 8 GeV with stripping injection
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Kazami Yamamoto et al., PRAB15, 120401 (2012)
Higher secondary particles, hadronic flux at

higher energy.

Residual dose rate around the foil:

1.6 times higher at 1 GeV as compared to 0.4 GeV!

Dipole field (T}

0
Stripping H

H ""foil "
Hl1 H2 H3

— Circulating
protons

Foil scattering and foil lifetime issues
should be further seriously concerned!

Needs careful injection design:

* H2 should be moderate.
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Curvature radius of the injection magnets
should be long enough to keep a lower
Lorentz stripping of the H- beam.

Thick foil
H'>H

waste beam

-
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* Project-X (8 GeV) inj. case. David Johnson, HB 2008

* H3 should be stronger to stripping HO* immediately.
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Stripping efficiency and H' excited states loss
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Stripping efficiency of 8 GeV H- as a
function of foil thickness
(Cross sections ref. W. Chou et al.,
NIMA 590, 1-12 (2008))
A foil thickness of 700 ug/cm? gives
H+:99.79%
HO:0.21%
H-:~10-6%
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Some of the HO are in excited states (HO*).
Decays passing through a magnetic field

duetoE=fycB

E is higher for a high-energy beam.

The decay rates depend on the strength of the
magnetic field.

—> Higher at higher H- energy

At 8 GeV, HO* > 2 are subjects to concern.
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Next generation H- stripping injection

To overcome the issues and limitations associated with foil stripping
as well as to realize next-generation multi-MW proton accelerator,
we have to established an alternate method of H- stripping.

- Laser stripping?
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PRL 118, 074801 (2017)
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SNS (Oak Ridge): Laser-assisted H- stripping
* High field magnets for stripping.
+ UV laser (355 nm) for H? excitation.
* 10 us stripping demonstrated.
* Studies for implementation are underway.
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8 GeV HO excitation. Higher H- energy is suitable.
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Laser stripping (LS) of H beam

Step 3: Step 2: Step 1:
photo-ionization H° excitation Photo-detection
H"+y>p+e HO+y>H™(n=3) H+y>Hl+e
HO* HO
p €~ AN
4+ --- Lo “ﬁ"‘{':
YAG Laser UV laser YAG Laser

A=1064 nm A=213 nm A=1064 nm

J-PARC: H- stripping by using only lasers
- IR lasers for stripping. Deep UV laser (~200 nm) for H° excitation.
- Demonstrated 40 us H™ neutralization at 3 MeV.
* A POP test at 400 MeV stripping expected in 2024.

To reduced the laser energy, a multi-reflection cavity
systems has been developed at J-PARC.

Seeder energy ~1/N, where, N = no. of reflections.
N = 32 achieved. Next trail for N = 64.

Tiny spot focused at the IP = Higher flux

Bigger spot at the mirrors > Reduce mirror damage L



Summary

» The H- stripping injection issues associated with stripper foil at J-PARC are discussed.

* The beam loss at the designed 1 MW has been reduced to an extremely low level
to remain mainly the foil scattering beam losses.

 The foil scattering uncontrolled beam losses and the corresponding residual
radiation at high-intensity operation is one of the concerning issues.

» To overcome the foil issues, a laser stripping of H- is under development.
e Based on the J-PARC and SNS results so far, a multi-MW beam power for
the MC can be achieved without serious issues.

« However, the H- stripping at higher energy and higher intensity becomes more
complicated and challenging.

 The injection system has to be designed more carefully.
* A laser stripping at higher H- energies would be more feasible.
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Implementatzon of a smaller B, and a smaller foil
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Time (u1s) Beam loss:
Measured-foil hits: 30% reduced 40% reduction at the injection, collimator and 15 arc sections.
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