

NInternational UON Collider Collaboration

Brainstorming on Possible MDs in CERN acc. Complex and for discussion S. Gilardoni – CERN and N. Milas ESS-Lund Jun. 2023

Scope of proposal

 Goal: discuss possible Machine Developments studies relevant for the accumulator/compressor and target beam delivery

Linac covered by Alessandra

Relevant studies (not exaustive...)

- Collective effects:
 - transverse and longitudinal instabilities
 - space charge at injection
 - e-cloud
- Minimum bunch length in high intensity regime
- Beam recombination

CERN accelerator complex as today

PSB main features

- Injection
 - 160 MeV H⁻
 - Multiturn charge exchange injection with transverse and longitudinal painting up = to ~120 turns
- 4 superimposed ring magnetically coupled
- Lattice: Triplet, FDF
 - Operating below transition
- Acceleration cycle
 - ~ 700 ms
 - 1.2 cycling period
- RF: Finemet
 - Operation with h=1 and h=2

- Extraction:
 - Max : 2 GeV
 - Single turn fast extraction with vertical recombination

Particles types:

- Protons, (lons O, S, In, Xe)
- Max total intensity: ~ 4-5e13 ppp
- Intensity per ring : ~ 1.2e13 ppp (h=1)
- Multipoles for resonant compensation
- Fully instrumented

PSB MD brainstorming

MD@PSB:

- H⁻ injection (to be explored with experts)
- Vertical recombination of bunches from separated rings (up 1e13 per bunch per ring)
 - Final bunch lenght
 - Transverse emittance growth
 - Beam can go on external beam dump or to the PS

Vertical recombination tests

IEEE Transactionson Nuclear Science, Vol.NS-26,No,3,June197

PS

PS

PS main features

- Injection
 - Max: 2 GeV protons
 - 70 MeV/n lead ions
 - Single turn injections
- Lattice: FODO with combined-function MB
 - Transition crossing with gamma-jump at 6.1 GeV
- Acceleration cycle:
 - Up to 3.6 s depending on final user
 - 1.2 cycling period
- RF:
 - 10 MHz ferrite loaded main RF system
 - 20, 40, 80 MHz for LHC beams production
 - 200 MHz for beam recapture after de-bunching
 - h=7, 8,16, 21, 42, 84,168
 - Finemet as longitudinal feedback system

- Extraction:
 - Fast extraction at 20 GeV and 26 GeV
 - Multiturn (5 turns) extraction at 14 GeV
 - Slow extraction 24 GeV
 - Particles types:
 - Protons, Ions (Pb, O, S, In, Xe)
 - In the past: anti-protons, e+, e-
- Max total intensity: ~ 4e13
 - External Exp. Area: East hall, AD
- Multipoles for resonant compensation
 - Fully instrumented

Gamma jump – transition crossing

80

80

55

60

0 100 Time (ms)

100

Time (ms)

An example of TMCI meas. at transition crossing

at in the

Some ideas

- Space charge limits at injection are being explored for LHC beams
 - A lot can be learned from there
- Minimum bunch length from bunch rotation interesting also for fixed target applications
 - Today for about 8e12 ppp (single bunch) about 20 ns bunch length
- Could use lattice at transition crossing or close to it exercise/study lattice with very small eta. Or with short bunch length from "isochronous" lattice
- Could study bunch merging in longitudinal AND transverse plane
- e-cloud driven instabilities can be induced by LHC-type beam in very controlled manner

11

We could think also to other machines not necessarily at CERN....

MInternational UON Collider Collaboration

Thank you very much for the discussions and inputs