

MInternational UON Collider Collaboration

Longitudinal tracking studies for the entire RCS chain

<u>Fabian Batsch</u>, Rama Calaga, Heiko Damerau, Ivan Karpov

<u>Acknowledgements</u>: David Amorim, Scott Berg, Fulvio Boattini, Luca Bottura, Christian Carli, Antoine Chancé, Alexej Grudiev, Elias Metral, Ursula Van Rienen, Daniel Schulte, Sosoho-Abasi Udongwo

Funded by the European Union under Grant Agreement n.101094300

IMCC Annual Meeting, Orsay, 21/6/2023

Outline

- Longitudinal emittance definitions
- Bunch length during acceleration
- Synchronous phase optimization
- Beam-induced voltages and HOM power estimates
- Outlook
 - emittance growth and budget
 - multi-turn effects and induced voltages calculations
- Summary

- - -

Reminder on design baselines

- Base for the work is the US <u>Muon Accelerator Program</u> (MAP)
- High energy complex consist of a chain of rapid cycling synchrotrons (RCS)

The RF challenges: Voltage

Installed voltages in lepton rings:

RCS1 LEP2 FCC-ee Circumference, $2\pi R$ [m] 5990 26658 91106 Energy factor, $E_{\rm ei}/E_{\rm ini}$ 5 4.8 n/a 5 (asym.) Slow (min.) Repetition rate, f_{rep} [Hz] n/a Number of turns few 10⁸ 108 17 Max. RF voltage, V_{RF} [GV] 21 3.6 11.3 Energy gain per turn, ΔE [GeV] 14.8 3.49 10

- → Even more RF voltage than any other circular collider
- → Much fewer turns

From talk by H. Damerau

The RF challenges: Intensity

High bunch charge and current:

	ILC	RCS1 (and RCS2)
Number of bunches, $n_{\rm b}$	1312	1 each μ^+ and μ^-
Bunch spacing, τ_{bs}	554 ns	$T_{\rm rev}$ = 20 µs
Bunch intensity, $N_{\rm b}$	2•10 ¹⁰ p/b	2.7 (2.5)•10 ¹² p/b
Average beam current, $I_{\rm b}$	5.8 mA	2 x 20 mA

- Average beam current more than three times (2×) above ILC
- Very strong transient beam loading
- During first turn in RCS1 energy gain is about 20% of beam energy

From talk by H. Damerau

General parameter table

Detailed parameter table: <u>https://cernbox.cern.ch/index.php/s/I9VpITncUeCBtiz</u>

	RCS1→314 GeV	RCS2→750 GeV	RCS3→1.5 TeV	1) 14 Basic data 15 Particles 14 Costs 17 Type	Symbol	Unit ME	<mark>Stage 1</mark> Value D И RCS	tails Value	Details Value
Circumference, $2\pi R$ [m]	5990	5590	10700	Dynamics Acceleration time Injection energy Ejection energy	T_{aa} E_{ai} E_{ai}	(ms) (MeV)/u (MeV)/u	0.34 63000 313830 define	1.09704595 313830 1 by 17 750000	2.37 750000 1500000
Energy factor, <i>E_{ei}/E_{ini}</i>	5.0	2.4	2.0	Energy ratio Momentum at e Momentum at e Momentum at e Number of turns Planned Survival rate	E_/E _N pic Pic R _{ain}	MeV/c MeV/c	4.98 63106 313935 17 0.9	2.39 313935 750106 55 0.9	2.00 750106 1500106 66 0.9
Repetition rate, f _{rep} [Hz]	5 (asym.)	5 (asym.)	5 (asym.)	Total survival rate Accel. Gradient, linear for survival Required energy gain per turn Transition gamma	N _g IN _g G ME	[MV/m] [MeV]	0.9 2.44 14755 20.41	0.81 1.33 7930 20.41	0.729 1.06 11364 ~30
Number of bunches	1μ+, 1μ ⁻	1μ+, 1μ ⁻	1μ ⁺ , 1μ ⁻	Injection relativistic mass factor Ejection relativistic mass factor Injection v/c Ejection v/c Ejection v/c	7.0 7.0 8.0 8.0 8.0	- - %	597 2971 0.9999986 0.999999043	2971 7099 0.999999943 0.999999901	7099 14198 0.999999901 0.9999999975
Bunch population	>2.5·10 ¹²	>2.3·10 ¹²	2.2·10 ¹²	Parameter Classical RCS Radius Circumference Circumference Ratio Pack fraction	R 2xR B _{jul} /B _i ?	(m) (m) -	953.3 5990 0.61	953.3 5990 1 0.61	1703.0 10700 1.79 0.628
Survival rate per ring	90%	90%	90%	Bend radius Tot. straight section length Tot. straight section length Injection bending field (average) RF Systems	ρ ₀ L _w B _m	m (m) (T)	581.8 2334.7 0.36 TESLA	581.8 2335.7 1.80 TESLA	1070.2 3975.7 2.34 TESLA
Acceleration time [ms]	0.34	1.04	2.37	77 Main RF frequency 78 Harmonic number 79 Revolution frequency ej 80 Revolution period 81 Max RF voltage 82 Max RF nover	h f _{er} Trev V _a P _{er}	[MHz] [kHz] [µs] [QV] [MW]	1300 25957 50.08 20.0 20.87	1300 25957 50.08 20.0 11.22	1300 46367 28.04 35.7 16.07
Number of turns	17	55	66	83 RF Filling factor Number RF stations Societies Number of cavities Number of cavities Peak Impedance Continue to exemite	· · ?	[Q]	0.4 Around 50 9-cell 696	0.4 Around 50 9-cell 374	0.45 Around 50 9-cell 536
Energy gain per turn, ΔE [GeV]	14.8	7.9	11.4	Accelerating field per total straight Accelerating field per total straight Accelerating field gradient, with FF Stable phase Conversion factor mm mrad – eVs	AE/L AE/L AE/L	[MeV/m] [MeV/m] [MV/m] [*] Vsimm mr#	6.3 8.9 22.3 45 69.40	3.4 4.8 12.0 45 165.86	2.9 4.0 9.0 45 331.72
G _{acc} for survival [MV/m]	2.4	1.3	1.1	 Longitudinal emittance (7E * 402) Longitudinal emittance (phase space area) Injection bucket area Ejection bucket area Bucket area reduction factor 	E', E', A _{thi} A _{bhi}	[eVs] [eVs] [eVs] [eVs]	0.0257.5 Me 0.079 0.62 1.37 0.172	m 0.025 0.079 1.01 1.56 0.172	0.025 0.079 1.40 1.97 0.172
Acc. field in RF cavity [MV/m]	30 (45 optimistic)	30	30	99 Horizontal betatron tune 100 Vertical betatron tune 101 Average horizontal Twiss beta 102 Average vertical Twiss beta 103 Injection synchrotron frequency	Q, Bb By	[m] [m] [kHz]	10 10 76.33	10 10 25.07	10 10 14.53
Max. $V_{\rm RF}$ for $\phi_{\rm s}$ =45° [GV]	20.9	11.2	16.1	Injection synchrotron frequency Injection synchrotron tune Q, Injection synchrotron tune Q, Injection synchrotron tune Q,		[KHZ]	34.20 1.52 0.68	16.22 0.50 0.32	10.27 0.52 0.37

0

The 1.3 GHz TESLA cavity

Relevant beam parameter

- Bunch population >2.2·10¹² → large intensity effects
- Image: Jacobi = 20.4/18.8/10.0 mA in RCS1/2/3 → 2x430 kW per cavity
- 700 / 370 / 530 cavities distributed over n_{RF} RF stations (with $G_{\text{acc}} = 30 \text{ MV/m}$)
- $\phi_{\rm s}$ = 45° (above transition: $\gamma_{\rm tr}$ = 20.41, 600 < γ < 14200)
- Cavity parameter (9 cells, L=1.06 m):
 - Harmonic number h = 25957 to 46367
 - *R/Q* = 518 Ω, total *R*_s = 306 GΩ
 - Gradient of structure 30 MV/m
 - $Q_L = 2.2e6$ (for beam loading compensation with $\Delta f = 320$ Hz, [ref])

Table 2: TTF cavity design p	arameters. ^a
type of accelerating structure	standing wave
accelerating mode	TM_{010} , π mode
fundamental frequency	1300 MHz
design gradient E_{acc}	25 MV/m
quality factor Q_0	$> 5 \cdot 10^9$
active length L	1.038 m
number of cells	9
cell-to-cell coupling	1.87 %
iris diameter	70 mm
geometry factor	270 Ω
R/Q	518 Ω
$E_{\rm peak}/E_{\rm acc}$	2.0
$B_{\text{peak}}/E_{\text{acc}}$	4.26 mT/(MV/m)
tuning range	\pm 300 kHz
$\Delta f / \Delta L$	315 kHz/mm
Lorentz force detuning at 25 MV/m	$\approx 600 \text{ Hz}$
Q_{ext} of input coupler	$3 \cdot 10^{6}$
cavity bandwidth at $Q_{ext} = 3 \cdot 10^6$	430 Hz
RF pulse duration	1330 µs
repetition rate	5 Hz
fill time	530 µs
beam acceleration time	800 µs
RF power peak/average	208 kW/1.4 kW
number of HOM couplers	2
cavity longitudinal loss factor k_{\parallel} for $\sigma_z = 0.7 \text{ mm}$	10.2 V/pC
cavity transversal loss factor k_{\perp} for $\sigma_z = 0.7 \text{ mm}$	15.1 V/pC/m
parasitic modes with the highest impedance : type	TM ₀₁₁
$\pi/9$ $(R/Q)/$ frequency	$80 \ \Omega/2454 \ MHz$
$2\pi/9$ $(R/Q)/$ frequency	$67 \ \Omega/2443 \ MHz$
bellows longitudinal loss factor \mathbf{k}_{\parallel} for $\sigma_z = 0.7 \text{ mm}$	1.54 V/pC
bellows transversal loss factor k_{\perp} for $\sigma_{\tau} = 0.7 \text{ mm}$	1.97 V/pC/m

From design report

Outline

- Longitudinal emittance definitions
- Bunch length during acceleration
- Synchronous phase optimization
- Beam-induced voltages and HOM power estimates
- Outlook
 - emittance growth and budget
 - multi-turn effects and induced voltages calculations
- Summary

-1-2

Longitudinal emittance

Different definitions of the longitudinal emittance and different units co-exist:

Encircling, 1 σ , 4 σ , FWHM,... Parameter table from webpage: $\sigma_z \cdot \sigma_E = 7.5 \text{ MeVm} \triangleq 0.025 \text{ eVs}$ $\rightarrow 4\pi \cdot \sigma_t \cdot \sigma_E = 0.31 \text{ eVs for}$ 4σ ellipse

Parameter	Unit	3 TeV	10 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20
Ν	10 ¹²	2.2	1.8
f _r	Hz	5	5
 (average)	Т	7	10.5
ε _L (norm, 1σ _z σ _E)	MeV m	7.5	7.5
σ _E / E	%	0.1	0.1
σ _z	mm	5	1.5

[eV-s], [MeV-m], [mm] can be converted converted:

 $[\text{MeV-m}] \cdot \frac{1}{c} = [\text{eV-s}] \qquad [\text{mm}] \cdot 10^{-3} \cdot \frac{E_{\mu,0}}{c} = [\text{eV-s}] \qquad [\text{mm}] \cdot 10^{-3} \cdot E_{\mu,0} = [\text{MeV-m}]$

 $E_{\mu,0} = 105.658 \,\mathrm{MeV}$

The longitudinal profile definition

 The tails must be defined. Equal FWHM bunch lengths but different tail definitions give different encircling emittances:

The longitudinal profile definition

 The tails must be defined. Equal FWHM bunch lengths but different tail definitions give different encircling emittances:

The longitudinal profile definition

Bucket at injection in RCS1

- From the dynamics point-of-view, muons behave more like protons \rightarrow Chose μ = 2.5 for now:
- The longitudinal profile after cooling would be an important input
- Side note: examples for muons exist but <u>not</u> for a collider application:

F. Batsch

Outline

- Longitudinal emittance definitions
- Bunch length during acceleration
- Synchronous phase optimization
- Beam-induced voltages and HOM power estimates
- Outlook
 - emittance growth and budget
 - multi-turn effects and induced voltages calculations
- Summary

Bunch lengths during acceleration

Injected bunch

0.2

Δt (ns)

0.3

0.4

2

-2

0.1

ועפט) שנ

- In the 1.5 TeV collider, bunch length σ_z = 5 mm
- In simulations, the bunch length at injection in RCS1 σ_{z} = 13 mm
- The 1 sigma bunch length decreases during acceleration in all 3 RCs:

F. Batsch

Final bunch length is $\sigma_z < 7$ mm, bunch rotation might be required

Outline

- Longitudinal emittance definitions
- Bunch length during acceleration
- Synchronous phase optimization
- Beam-induced voltages and HOM power estimates
- Outlook
 - emittance growth and budget
 - multi-turn effects and induced voltages calculations
- Summary

- - - -

The synchronous phase and its influence

- Bucket filling factor defines stable phase ϕ_s
- The synchronous phase ϕ_s itself directly impacts the main RF requirements:
- Energy gain of the synchronous particle $\Delta E_s = V_{RF} * \sin \phi_s = 14.75$ GeV per turn. For $\phi_s = 45^\circ \rightarrow V_{RF} = 21$ GV, i.e., large overvoltage
- The bunch length changes with ϕ_s , which affects the HOM power to a small extend
- \rightarrow Increase the synchronous phase and consequently reduce bucket area to possibly decrease $V_{\rm RF}$

Over-voltages due to $\phi_{\rm s}$

Independent of the cavity frequency or RCS, the overvoltage in the RF voltage

 $V_{RF} = \Delta E_s / \sin(\phi_s)$, compared to $\phi_s = 45^\circ$ is:

Over-voltages due to $\phi_{\rm s}$

Independent of the cavity frequency or RCS, the overvoltage in the RF voltage

 $V_{RF} = \Delta E_s / \sin(\phi_s)$, compared to $\phi_s = 45^\circ$ is:

CÉRN

Synchronous phase optimization

Bucket areas for each RCS:

- Intensity effects decrease the bucket area slightly
- Relaxed voltage requirements and longer bunches (reduces HOM power)

F. Batsch

Synchronous phase optimization

- Possibility to use the muon loss as a criteria
- The beam losses increase gradually with the shrinking bucket
- → Used single bunch for $\phi_s = 45^\circ$ and "injected" it in all cases to avoid that the matching routine shrinks the bunch:

- Between $\phi_s = 50^\circ$ and 55 seems to be the limit
- Further studies to come after optimization of the RF voltage and ramping

Synchronous phase for nonlinear ramping

- The same scan can be repeated for nonlinear ramping function
- Example of an older simulation for RCS 1, $\phi_s = 57.5^\circ$, input emittance 0.1 eVs:

 This study will be repeated with updated values after optimization of the RF voltage and ramping

F. Batsch

Outline

- Longitudinal emittance definitions
- Bunch length during acceleration
- Synchronous phase optimization
- Beam-induced voltages and HOM power estimates
- Outlook
 - emittance growth and budget
 - multi-turn effects and induced voltages calculations
- Summary

- 1- :-

Beam-induced power losses

- Question of possibly high HOM power for the TESLA cavity raised during collaboration meeting
- HOM power in TESLA / ILC 1.3 GHz cavity calculated in two ways:
- 1. From power loss through loss factor k_{\parallel} from approximated wake potentials in macroparticle tracking simulations (BLonD), containing the information about all HOM:

$$k_{||} = \int \lambda(t) W_{||,SR}(t) dt$$
, with bunch charge density $\lambda(t)$
 $P_{HOM} = k_{||} * \frac{Q^2}{T_B}$ with bunch charge Q and bunch spacing $T_B = T_{rev}$
 rev

at is

Beam-induced power from mode analysis

F. Batsch

2. Using the output of <u>ABCI</u> code for detailed RF structure and an approximation for short Gaussian bunches to compute loss factor

$$k_{||} = \left| rac{R}{Q} \right| rac{\omega_r}{2} * e^{-(\omega_r \sigma)^2}$$
 ($rac{\omega_r}{4}$ for Linac norm)

 This gives the loss factor per mode, for longitudinal modes, see <u>here</u> (TESLA) & <u>paper</u> (ILC LL)

→ Total HOM loss factor is sum over all HOMs:

$$k_{||} = \sum k_{||,i}$$
, $P_{HOM} = k_{||} * \frac{Q^2}{T_B}$

Table 2 Values of Qext for the monopole modes

MODE		FREQ.	R/Q	2 welded couplers on asymmetric cavity Qext	2 demount. couplers on asymmetric cavity Qext	2 demount. couplers on symmetric cavity Qext	Qext Limit
		[MHz]	[Ω]	[1.0E+3]	[1.0E+3]	[1.0E+3]	[1.0E+3]
TM011	1	2379,6	0,00	350,0	1150	1600	
	2	2384,4	0,17	72,4	360	460	
	3	2392,3	0,65	49,5	140	220	
1	4	2402,0	0,65	84,0	68	110	
	5	2414,4	2,05	32,0	70	97	
	6	2427,1	2,93	29,1	81	59	
1	7	2438,7	6,93	20,4	66	49	1000
	8	2448,4	67,04	27,4	58	51	100
	9	2454,1	79,50	58,6	110	100	100
TM012	1	3720,0	1,26	3,0			
	2	3768,9	0,07	5,1			
	3	3792,2	0,75	5,2			
	4	3811,7	1,43	3,9			
í .	5	3817,5	0,18	15,2			
	6	3829,2	2,33	11,3			
	7	3839,8	0,77	40,0			
	8	3845,3	22,04	240,0			300
	9	3857,3	6,85	6,1			1000

From "Higher order mode coupler for TESLA", J. Sekutowisz

Beam-induced power losses: results

- Parameters in BLonD: $n_{\rm RF}$ = 32 RF stations, 696 cavities, 90% survival, initial bunch length σ_z = 13 mm, <u>1 bunch</u>, single-turn effects
- → E.g. $k_{||,SR} = \int \lambda(t) W_{||,SR}(t) dt = -2.11 \text{ V/pC}$
- → The HOM power loss per cavity reaches 10.4 kW (Bunch population 2.54x10¹², $T_{rev} = 20 \ \mu s \rightarrow I = 20.4 \ mA$ as upper estimate)

Beam-induced power losses: results

Table 2 Values of Qext for the monopole mode

					2 welded	2 demount.	2 demount.	
MODE			EREO	RIO	couplers on	couplers en	couplers on	Link
					navity	cavity	cavity	Carr
					Qext	Qext	Qext	
	_		[MHz]	[0]	[1.0E+3]	[1.0E+3]	[1.0E+3]	[1.0E+3]
M O	11	1	2379.6	0,00	350,0	1150	1600	
		2	2384.4	0.17	72,4	360	460	
		3	2392,3	0,65	49,5	140	220	•
		4	2402,0	0,65	84,0	68	110	
		5	2414.4	2,05	32,0	70	97	1
		6	2427,1	2,93	29,1	81	59	
		7	2438.7	6.93	20,4	66	49	1000
- F		8	2448,4	67,04	27,4	58	51	100
		9	2454,1	79,50	58,6	110	100	100
FM 01	2	1	3720.0	1,26	3,0			
		2	3768,9	0,07	5,1			
		3	3792.2	0,75	5,2			
		4	3811,7	1,43	3,9			
		5	3817,5	0,18	15,2		1	1
		6	3829,2	2,33	11,3			1
	_	7	9830.8	0.77	40.0			
		8	3845,3	22,04	240.0			300
			0057.0				1	1 1 0 0 1

Beam-induced power losses

- The induced power is very large, up to 10 kW for RCS1&2 per bunch and cavity
- → Bunch crossings inside the cavity increases power up to 4 times, to be avoided
- Central question: What is the CW value?
 10kW over 0.3 to 2.4 ms correspond to which CW power in 5Hz operation?
- Example: HOM power absorber capacity limit is 1 kW, 3-4 kW under development
 → up to 20 kW per cavity estimate

Figure 1: JLab Ampere class cavity with HOM loads and waveguide fundamental power coupler.

See e.g. also PhD thesis by S. Zadeh

Detailed studies on HOM and high-capacity power absorbers (or larger iris, wakefields scale with $1/a^2$, *a* the iris radius)

Outline

- Longitudinal emittance definitions
- Bunch length during acceleration
- Synchronous phase optimization
- Beam-induced voltages and HOM power estimates

Outlook

- emittance growth and budget
- multi-turn effects and induced voltages calculations
- Summary

Emittance budget

The emittance budget was discussed in the <u>Accelerator design meeting</u>, see <u>talk</u> by

D Schulte:

D. Ochalle.	Rel. emittance blow-up	Relative tolerance	Relative luminosity
	0.1%	0.03	0.999
For the entire 5-GeV-	1%	0.1	0.99
chain!	10%	0.3	0.9
	100%	1	0.5

"Would assume a total budget of 10% (most relaxed acceptable tolerance)"

- Challenge assuming 4% per RCS and beam transfers \rightarrow
- \rightarrow Beam transfer possible source of emittance growth See last annual meeting: [link]
- Beam transfer optimized with ramping functions after \rightarrow the HOM and multi-turn/bunch effects are determined

Multiturn effects and mode analysis

- Multi-turn effects computational challenge
- We compute the induced voltages only for the bucket one turn later

 Currently implementing this in our code, together with an improved calculation of the induced voltages

Multiturn effects and mode analysis

- Improved calculation of the induced voltages needed:
- K. Bane formulism only valid for short bunches with respect to the cavity cell
- We will not differentiate between short-range (K. Bane) and long-range effects, but use the mode analysis of ABCI and resonator models of the first 10 main HOMs:

F. Batsch

• Add contributions from each mode, and later from the counterrotating bunches

		_							
					2 w	elded	2 demount.	2 demount.	
					coup	olers on	couplers on	couplers on	Qext
м	ODE		FREQ.	R/Q	asy	mmetric	asymmetric	symmetric	Limit
					cav	ity	cavity	cavity	
						Qext	Qext	Qext	
			[MHz]	[Ω]	1	1.0E+3]	[1.0E+3]	[1.0E+3]	[1.0E+3]
TMO	11	1	2379,6	0,00		350,0	1150	1600	
		2	2384,4	0,17		72,4	360	460	
		3	2392,3	0,65		49,5	140	220	
		4	2402,0	0,65		84,0	68	110	
		5	2414,4	2,05		32,0	70	97	
		6	2427,1	2,93		29,1	81	59	
		7	2438.7	6.93		20,4	66	49	1000
		8	2448,4	67,04		27,4	58	51	100
		9	2454,1	79,50		58,6	110	100	100
TM0	12	1	3720,0	1,26		3,0			
		2	3768,9	0,07		5,1			
		3	3792,2	0,75		5,2			
		4	3811,7	1,43		3,9			
		5	3817,5	0,18		15,2			
		6	3829,2	2,33		11,3			
	_	7	3830 8	0.77	_	40,0			
	1	8	3845,3	22,04		240,0			300
		9	3857,3	6,85		6,1			1000
	_					_			
	and the second s					and the second second		ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER	

Table 2 Values of Qext for the monopole modes

Summary

- Challenging target for longitudinal emittance, its budget and its growth
- Bunch length after acceleration below 7 mm to be expected
- Emittance after cooling and linac systems is essential input
- Synchronous phase baseline is $\phi_s=45^\circ$
- HOM power losses are on the 10 kW range during acceleration → CW level estimates and HOM coupler development important
- Working on a new calculation of the induced voltages and multiturn effects

- - --

The BLonD code

(Beam Longitudinal Dynamics code)

F. Batsch

- <u>BLonD</u>: macro-particle tracking code, developed at CERN since 2014
- Links: <u>documentation</u> and <u>github</u>
- MuC-specific to multiple RF stations
 & muon decay
- Studies of today with only one

bunch, 2nd to follow

• The beam losses increase gradually with the shrinking bucket

 \rightarrow Used single bunch for ϕ_s = 45° and "injected" it in all cases to avoid that the matching routine shrinks the bunch,

Induced voltages: Short-range wakefields

Based on K. Bane et al., 'Calculation of the short-range longitudinal wakefields in the NLC linac', ICAP98, 1998 $W_L \approx \frac{Z_0 c}{\pi a^2} \exp\left(\frac{2\pi \alpha^2 L^2 s}{a^2 g}\right) \operatorname{erfc}\left(\frac{\alpha L}{a} \sqrt{\frac{2\pi s}{g}}\right) [s \operatorname{small}]$ (3) One can approximate this by a semi-analytically expression, valid for small bunch length *s* and *s/L* < 0.15: $W_L = \frac{Z_0 c}{\pi a^2} \exp\left(-\sqrt{s/s_0}\right) \qquad s_0 = 0.41 \frac{a^{1.8} g^{1.6}}{L^{2.4}}$

The parameters for the Tesla cavity¹ gives long. wake

functions on the order of 30 V/pC/m:

Adjusting inner diameter can be a powerful tool to mitigate wakefields!

L= 115.4 mm g= 82 mm a= 35 mm b= 103.3 mm

The BLonD code convolutes this wake function with the beam profile to obtain the induced voltage

¹Wakefield studies for the Tesla cavity shown in TESLA Report 2003-19

F. Batsch

Induced voltages: Short-range wakefields

- The induced voltage from the short-range wakefield is as large as 1.5 MV per cavity, i.e., also 1.5 MV/m
- The total induced voltage per turn is around 400 MV, thus 3-4% of the accelerating voltage

Induced voltages: Long-range wakefields

- The induced voltage from fundamental beam loading for a single turn is 1.5 MV per cavity
- So far for a single turn

Important cavity parameters : Gradient in cavity: 30MV/mL=1.04m $R/Q = 518 \Omega$ $\Delta f = 320 \text{ Hz}$ for beam loading $Q_L=2.2e6$ compensation

Induced voltages: Combined wakefields

 Both effects combined: total induced voltage in a cavity is around 2.2 MV per cavity / per meter, i.e. 10-11% of the RF voltage

Total induced voltage

short-range wakefield

=

+ long-range wakefield

Beam-induced power with BLonD

- The geometry of the cavity defines all HOM, i.e. for single-bunch cases, the shortrange wakefield from K. Bane [ref, see appendix for details] includes these, but not the long-range fundamental mode
 - \rightarrow Use short-range wake potential $W_{||,SR}$ to compute power

Studies for 801.58 MHz cavities

• Some RCS parameter that change with the FCC-ee 5-cell cavity:

	TESLA/ILC	FCC-ee	
Frequency f _{RF} [MHz]	1300	801.58	
Cells	9	5	
Active length <u>Lactive</u> [mm]	1038	935	
Cavity length L _{cav} [mm]	1276	1291	46% instead of 38% use
Gradient [MV/m]	30 (conservative)	25	straight section, feasible!
Number of cavities RCS1	696	835	
Straight length RCS1	2334	2334	
Straight length with RF	38 %	46 %	

of

- Aria

F. Batsch