Routes to improved cooling performance

Diktys Stratakis Fermi National Accelerator Laboratory

IMCC Annual Meeting June 20, 2023

Ionization cooling

- Muon Colliders require significant reduction of the 6D phasespace. Ionization cooling method is the only technique that can achieve that
- Cooling has a HUGE leverage on the overall machine design
 - It will determine the proton driver and target station specifications
 - It will have a tremendous impact on the overall luminosities envisioned
- Using recent theoretical and technology improvements its critical to develop designs that could give us the lowest possible 6D emittance

Cooling baseline

3

Questions we like to address

- What are the limitations of 6D cooling? By taking into account recent technology advancements and the newest optimization methods how far can we cool the beam?
- How low (in terms of emittance) can we go with final cooling?
- Could some alternatives options, aid the final cooling process so that we can reach emittances beyond existing designs?

Rectilinear channel for 6D cooling

- Straight geometry simplifies construction and relaxes several technological challenges
- Multiple stages with different cell lengths, focusing fields, rf frequencies to ensure fast cooling
- Very promising solution for 6D cooling. BUT...(see next slides)

Past constrains from technology (1)

Peak fields on coils should not exceed Nb₃Sn limits

Past constrains from technology (2)

- Need consistent value for comparison
- Cavity lengths also matter
- Propose consistent values
 - consistent with 17 MV/m at 201.25 MHz

		\frown	ΔE	ΔE				
Freq.	Length	Grad	v = c	200 MeV/c				
MHz	cm	MV/m	MeV	MeV				
325	30	22	5.51	5.23				
650	15	31	3.88	3.68				
975	10	38	3.17	3.01				
ctober 2013 J. S. Berg Analysis of Cooling Lattices Vacuum RF								

 Normal conducting rf cavities within > 1 T operate ~ 30-50% of the achievable gradient at 0 T

Pushing the limits of 6D cooling

Transverse Cooling for Stages B8 - B12

 If HTS magnet technology is considered, rectilinear channel can reduce the 6D emittance even more

8

Optimization algorithms

- Cooling channel design is a challenging problem with many knobs and multiple design objectives. Simulations using G4Beamline are moderately expensive in time
- Using recent advances in efficient optimization algorithms, we could find optimal settings for muon cooling design.

SURROGATE ASSISTED ALGORITHMS

Evolutionary algorithms take many evaluations to converge. This is a problem when running on expensive (up to 1hr per simulation) accelerator codes. Modern methods build a "surrogate model" from data as optimization is performed to inform the suggestion of future candidate solutions

A COMPARISON SURROGATE

Instead of modeling objective functions (IE emittance, bunch length, etc) directly, model the comparison relationship (f(x1) < f(x2)). The classification problem may be simpler and is invariant under monotonous transformations of f(x).

University of Chicago + Fermilab collaboration started

Final cooling with thick wedges

- The idea is to use a thick wedge for aggressive transverse cooling through the emittance exchange process
- When passing the beam through a wedge absorber, the bunch width is transformed into an energy width
- This process has shown to be very promising although at this moment, a conceptual design is available, only.

Final Cooling for a High-Energy High-Luminosity Lepton Collider

David Neuffer,^{a*} Hisham Sayed, ^b Terry Hart and Don Summers^c

 ^a Fermilab, PO Box 500, Batavia IL 60510, USA
^b BNL, Upton, NY 11973, USA
^c University of Mississippi Oxford, MS 38655, USA

Final cooling example

 The performance of this system has been simulated by David Neuffer. The starting point is the beam coming out at stage ~9 of Palmer's high-field solenoidal channel

z(cm)	$P_z(MeV/c)$	$\varepsilon_x(\mu m)$	$\varepsilon_y(\mu m)$	$\varepsilon_L(mm)$	$\sigma_E(MeV)$	6-D ε increase
0	100	129	127	1.0	0.50	1.0
0.6	95.2	40.4	130	4.03	1.95	1.29
1.2	90.0	25.0	127	7.9	3.87	1.54

Optimization steps

- Step 1: Bring down transverse emittance to ~130-150 micron range
 - Rectilinear channel is preferred for the hand-off as it will keep longitudinal emittance low
- Step 2: Match into the first wedge: Phase-rotate to reduce momentum spread. Typical ranges are ~120 MeV/c at (0.8-1) MeV/c momentum spread. Focus into first wedge causes an emittance exchange to 25-30 µm (x), 130-150 µm (y), 15 mm (z).
- Step 3: Match into the second wedge: Beam is stretched in time to enable phase energy rotation and reduce energy spread.
 Dispersion suppression may required. Focus on the second wedge for emittance 30 µm (x), 25-30 µm (y), 75 mm (z)
- Preliminary studies indicate that no very high magnetic fields are needed but more work is needed.

Path forward

- Funding is very limited to explore any of the ideas discussed here
- We have established a collaboration with U. Chicago to work on some of the 6D cooling channel optimizations
 - Our interest is to find out how far we can push this channel using newest advancements (continue Don Summers work)
- We have a Fermilab summer intern who works on optimizing the emittance exchange wedge for final cooling
 - We anticipate to have more results within the next 4-6 weeks
- A proposal for further funding submitted through Fermilab's Laboratory Directed Research program
 - This will gives us resources to bring-in more experts on the final cooling design and simulation work