Front End Buncher and φ-E Rotator

David Neuffer

Maybe 2023

Introduction + history

- Motivation:
 - Proton beam on Hg target -small

Drift + Rotate to small δp for cooling

- High- frequency buncher and phase rotator
- IDS "Neutrino Factory" 200 MHz (2011)
- Front End for MAP Muon Collider (2014)
 - 325 MHz baseline

Major changes

- Chicane and absorber
- Helical Snake 6-D Cooler
- > Optimization

Inverse phase-energy rotator

- Bunch recombiner
- Future Variations

Drift + "rf" Buncher after target

- R. Palmer -1994
 - Short bunch \rightarrow long bunch, small δE
 - But long bunch means low freq. rf (< ~20 MHz)
- High frequency rf forms train of bunches (>200 MHz)
 - match rf phase \rightarrow mismatch frequency ??- 2000
- Fixed frequency Rotator \rightarrow adiabatic vernier rotator
 - D Neuffer A. van Ginneken PAC 2001 TPPH16

• Works for both signs $\mu^+ \mu^- !!$

IDS Baseline Buncher and φ-E Rotator

COOLING LATTICE

> Drift $(\pi \rightarrow \mu)$

UON Collider Collaboration

- Adiabatically" bunch beam first (weak 320 to 232 MHz rf)
- Φ-E rotate bunches align bunches to ~equal energies
 - 232 to 202 MHz, 12MV/m
- Cool beam 201.25MHz ~15 MV/m rf
- Captures and Cools both μ^+ and $\mu^ \succ$

325MHz System "Collider"

- 20T→ 2T
- Buncher
 - P_o=250MeV/c
 - P_N=154 MeV/c; N=12
 - $V_{rf}: 0 \rightarrow 15 \text{ MV/m}$
 - (2/3 occupied)
 - f_{RF} : 490→ 365MHz

Rotator

- V_{rf}: 20MV/m
 - (2/3 occupied)
- f_{RF} : 364 → 326MHz
- N=12.045
- P₀, P_N→245 MeV/c
- Cooler
 - 245 MeV/c
 - 325 MHz
 - 25 MV/m
 - 2 1.5 cm LiH absorbers /0.75m

Initial version was open from target to cooler

- Accepts µ⁺, µ⁻ at ~250 MeV/c
- Also accepts everything else e⁺⁻

tati

- Introduce chicane + absorber to filter out unwanted particles (C. Rogers, et al.)
 - Chicane cuts out P > 500 MeV/c
 - Absorber stops protons, electrons, pi,
 - 30 cm Be
- Can we introduce without destroying front end ??


```
SREGION ! Bent solenoid
6.5 1 1e-2
1 0. 1.0
BSL
1 2.0 0.0 1 0.283 0.0 0.058181
0.0 0.0 0.0 0. 0. 0. 0. 0.
VAC
NONE
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
```

MInternational UON Collider

325 "Collider " w Chicane/Absorber

Add 30 m drift after chicane

.6.5m →+21.67°,-21.67°

Add chicane + absorber

- particle 1-283 MeV/c
- particle 2-194 MeV/c
- absorber at 54m
 - 10cm Be
 - particle 1-250 MeV/c
 - particle 2-154 MeV/c
- Bunch (N=12) 0→15 MV/m :490→ 365 MHz
- Rotate (N=12.045)– 20MV/m : 365 → 326.5 MHz
- Cool -325MHz -25 MV/m
 - p_{ref}=245 MeV/c

Simulation Results

Simulation obtains

- ~0.12 µ/p within acceptances
- ~2014 MARS
- 8 GeV proton source

> FOFO cooling

- Cools transversely
- By factor of 3
 - ~10× in 6-D phase space

Rf Buncher/Rotator requirements

Buncher -21m

- **37** cavities (**14** frequencies)
- 13 power supplies (~1—3MW)
- RF Rotator -24m
 - 64 cavities (16 frequencies)
 - 20 MV/m, 0.25m
 - ~2 MW (peak power) per cavity
- Cooling System 325 MHz
 - 200 0.25m cavities (75m cooler), 25MV/m
 - ~4MW /cavity

75

100

125

0

0

25

50

Front End section	Length	#rf cavities	frequencies	# of freq.	rf gradient	rf peak power requirements
Buncher	21m	42	484 to 365	14	0 to 16	0—1.34 MW/cavity
Rotator	24m	56	364to 326	16	20	~2.4 MW/cavity
Cooler	75m	200	325	1	25 MV/m	~3.7MW/cavity
Total df+bxr+rttr	~134m	93		30	~500MV	140MW
6-D cooler	126m	360	325 MHz	1	25 MV/m	~3.7 MW

150

Simulation Results

Simulation obtains

- ~0.12 µ/p within acceptances
- ~2014 MARS
- 8 GeV proton source

> FOFO cooling

- Cools transversely
- By factor of 3
 - ~10× in 6-D phase space

Table of rf cavities, power

Buncher	Buncher	RF Power]	Rotator	Rotator	RF Power
frequency	gradient	/cavity (MW)		frequency	gradient	/cavity (MW)
(MHz)	(MV/m)	(4 cavities)		(MHz)	(MV /m)	(4 cavities)
488.42	0.80	0.001		361.67	20	2.06
478.17	1.33/1.87	0.007		355.70	20	2.1
466.42	2.40/2.94	0.015		350.60	20	2.14
455.24	2.94/3.48	0.053		346.23	20	2.19
444.56	4.55/5.08	0.086		342.48	20	2.23
434.45	5.62/6.15	0.13		339.27	20	2.26
424.70	6.64/7.23	0.19		336.54	20	2.28
415.39	7.76/8.30	0.27		334.23	20	2.30
406.49	8.83/9.37	0.35		332.27	20	2.31
397.97	9.90/10.4	0.46		330.62	20	2.32
389.80	11.2/11.5	0.58		329.35	20	2.33
381.95	12.0/12.6	0.71		328.30	20	2.34
374.42	13.1/13.7	0.86		327.50	20	2.35
367.18	14.2/14.8	1.0		326.92	20	2.36
				326.54	20	2.37
				326.37	20	2.37

First few buncher cavities are very low gradient; should be removed, grouped or increased in strength

RF for 6-D Alexahin cooler

- Initial version had transverseonly cooler
- Helical FOFO snake
 - Alternating tilted solenoids
- ➢ 126 m long
 - 2 cavities every 0.7m
 - 160 0.25m cavities 25 MV/m
- Cools longitudinally and transversely
 - $\epsilon_L \times$ 1/3, $\epsilon_1 \times$ 1/6 , $\epsilon_2 \times$ 1/5
 - ~1/100 × (6-D cooling)
- > Cools both μ^+ and μ^-

coils: R_{in}=42cm, R_{out}=60cm, L=30cm; RF: f=325MHz, L=2 \times 25cm; LiH wedges

Some Optimizations (H. Sayed)

Adiabatic transition from high-field to low field ?

- 20T → 2 T in 15m?
- Shorter transition is better
 - 5 m
- Adiabatic

A. Portone, P. Testoni, J.Lorenzo Gomez (F4E)

Focusing field in channel

- 2T constant field in baseline
- More Field is better
 - 2→3→4 T
 - Alternating gradient ?

Optimization (H. Kamal Sayed)

Buncher +Rotator-31 cavity sets

- Changed frequency, rf gradient
- Optimized using NERSC supercomputer using evolutionary optimization algorithm, 100's of simulations
 - Increase E_{rf} in Buncher
 - By ~4 MV/m

ON Collide

- Higher gradient better
- Rf reaches 325 MHz faster ...
 - Could use shorter system ?
 - Could start further downstream

Time – reversed version

Bunch-Recombiner

- Start with train of bunches
 - Cooled beam after initial cooler
- Vernier rf to bunch train
- Can recombine bunch train after initial cooler to single bunch for final cooler
- Looks cleaner than Front-end
 - Starts with cold muons-only
 - C. Yoshikawa, C. Ankenbrandt, D. Neuffer, K. Yonehara
 - IPAC2012, TUPPD013
 - MuCOOL note 548 (2010)

- Buncher/Rotator scenario parameters developed semiempirically
 - Guided by simulations, extrapolation, intuition
- Neutrino Factory Scenarios, Muon Collider scenarios done similarly
- > Tweaked to include chicane absorber

Should develop less empirically ??

- Parameters available in ICOOL constrain method
- Start with final rf frequency
 - 325 MHz
- Select 2 reference particles
 - Initial momentum 250 MeV/c / 180 MeV/c
- Select number of bunches
 - n = 12
- Buncher length, rf gradients
 - 21 m 0→16 MV/m
- Rotator length, rf gradient
 - N =12.05, 24m, 20 MV/m
 - Icool parametrization not ideal
 - Ref particle accelerations \rightarrow 245 MeV/c
- Adjust lengths to match
- Match to cooling

Thank you for your attention

IDS RF requirements (200 MHz system)

Buncher

- 37 cavities (13 frequencies)
- 13 power supplies (~1—3MW)
- > RF Rotator
 - 56 cavities (15 frequencies)
 - 12 MV/m, 0.5m
 - ~2.5MW (peak power) per cavity
- Cooling System 201.25 MHz
 - 100 0.5m cavities (75m cooler), **15MV/m**
 - ~4MW /cavity

Front End section	Length	#rf cavities	frequencies	# of freq.	rf gradient	rf peak power requirements
Buncher	33m	37	319.6 to 233.6	13	4 to 7.5	~1 to 3.5 MW/freq.
Rotator	42m	56	230.2 to 202.3	15	12	~2.5MW/cavity
Cooler	75m	100	201.25MHz	1	15 MV/m	~4MW/cavity
Total drift)	~240m	193		29	~1000MV	~550MW

Concept

design

construction

MAP rf properties (~ Pillbox; ~325 MHz)

- > Assume pillbox, Cu walls
 - Compare with MICE rf
- ≻ Q = ~40200

Collaboration

- a=0.353m, L=0.25, f=325MHz
- T_t=0.884, R_s=0.00467
- > $P_0 = 3.7$ MW at 25MV/m
 - U₀ = 23.43J, **T_{fill} = 63.7µs**

$$Q_0 = \frac{2.405 Z_0}{2(\pi f_{rf} \rho \mu_0)^{\frac{1}{2}} (1 + \frac{a}{L})} \rho_{Cu} = 1.68 \times 10^{-8} \text{ ohm-m}} R_s = \sqrt{\rho_{Cu} \pi \mu_0 f_0}$$

$$U_0 = \pi \varepsilon_0 L a^2 0.52^2 \frac{E_0^2}{2}$$

$$P_0 = \frac{\pi R_s 0.519^2 E_0^2 a(L+a)}{Z_0^2}$$
$$T_{fill} = Q_0 \frac{\ln(2.0)}{\pi f_{rf}}$$

$$T_t = \frac{\sin\left(\frac{\pi f_{rf}L}{c}\right)}{\frac{\pi f_{rf}L}{c}}$$