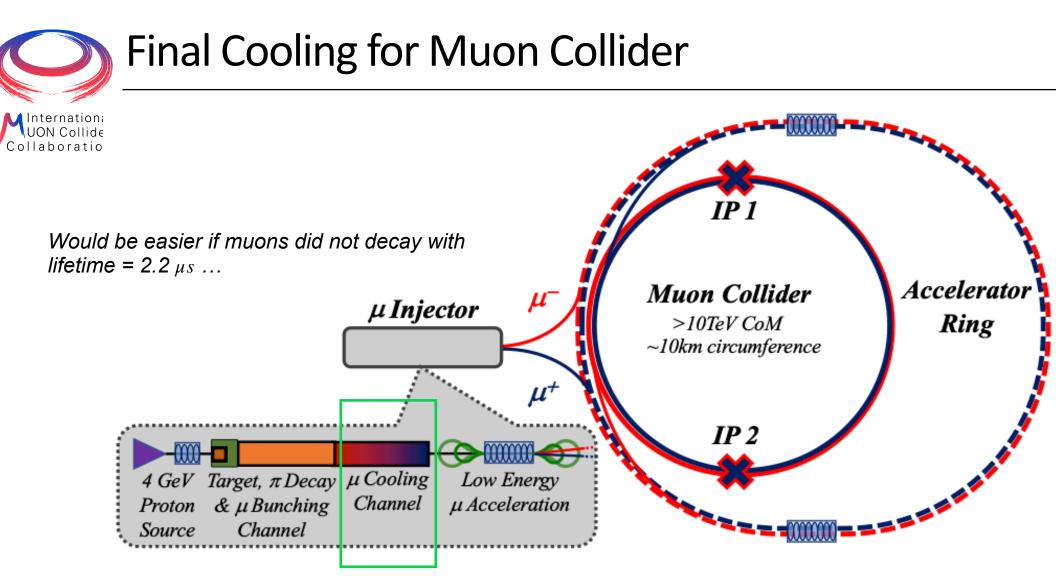


Final Cooling System Design

Elena Fol

C. Rogers, D. Schulte, B. Stechauner, A. Latina, A. Grudiev

IMCC 2nd Annual Meeting Paris Orsay, June 21 2023



• Final Cooling overview and baseline

- Design strategy and applied methods
- Estimating optimal cooling path
- Solenoid optics matching
- Longitudinal paramaters control

-A is

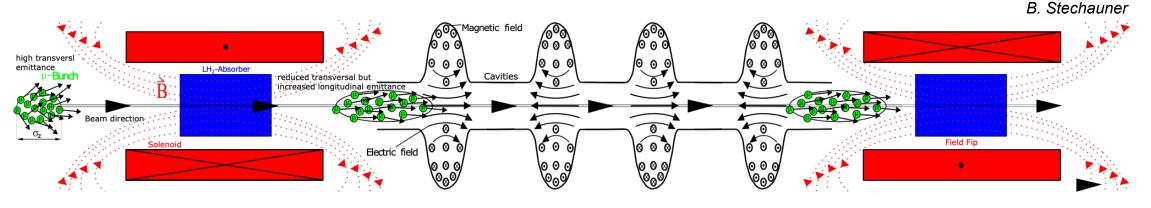
- Transmission considerations
- Conclusions and next steps

Muons are created as decay products and form a beam with a huge emittance

Cooling (the reduction of occupied phase-space by muons) is required

Traditional cooling techniques are not suitable due to muons lifetime

Ionisation cooling: fast novel technique, principle is demonstrated by MICE collaboration

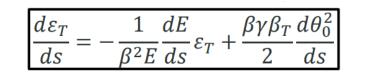

\bigcirc

Technology and challenges of Final Cooling

MInternational UON Collider Collaboration

Ionisation cooling: the only technique that works on the timescale of the muon lifetime

- Muons passing through a material —> energy loss due to the interaction with absorber material
- Reduction of normalised beam emittance
- Re-accelerating the beam to restore the longitudinal momentum



Momentum loss is opposite to motion, p, p_x , p_v , ΔE decrease

Momentum gain is purely longitudinal

Lowering transverse emittance on the costs of :

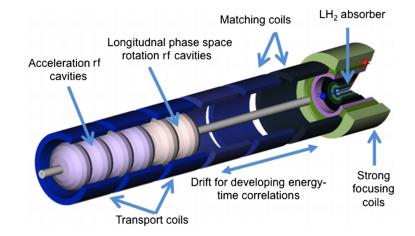
- Longitudinal emittance growth
- Bunch length increasing: challenging RF set-up
- ➡ Energy spread (needs to be kept within the accelerator acceptance)
- ➡ Number of survived particles

Energy loss

term

Multiple scattering

term


MInternational UON Collider

ollaboration

Baseline Design and simulation tools

Baseline: MAP study

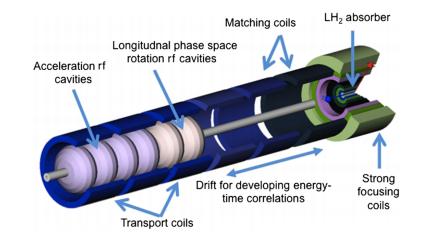
- Starting beam parameters: $\epsilon_{\perp} = 300 \mu m$, $\epsilon_{\parallel} = 1.5 mm$, $\sigma t = 50 mm$, $\sigma E = 3.2 MeV$
- High-field magnets 25—32 T, beam momenta ranging from 135 MeV/c to 70 MeV/c
- Achieved in previous studies: ε_{\perp} = 55 µm, with ε_{\parallel} = 76 mm, transmission of 50%
- Target is $\epsilon_{\perp} = 25\mu$ m: should be possible to achieve with stronger focusing fields, alternative absorber configuration, advanced optimisation

-ri

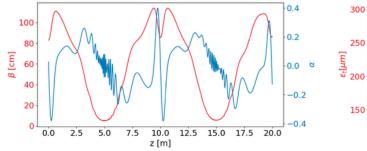
High field – low energy muon ionization cooling channel Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer Phys. Rev. ST Accel. Beams **18**, 091001 – Published 4 September 2015

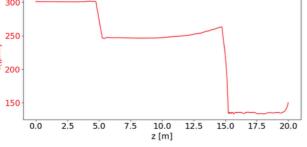
MInternational UON Collider

ollaboration


Baseline Design and simulation tools

Baseline: MAP study


- Starting beam parameters: $\epsilon_{\perp} = 300 \mu m$, $\epsilon_{\parallel} = 1.5 mm$, $\sigma t = 50 mm$, $\sigma E = 3.2 MeV$
- High-field magnets 25—32 T, beam momenta ranging from 135 MeV/c to 70 MeV/c
- Achieved in previous studies: ϵ_{\perp} = 55 µm, with ϵ_{\parallel} = 76 mm, transmission of 50%
- Target is $\epsilon_{\perp} = 25\mu$ m: should be possible to achieve with stronger focusing fields, alternative absorber configuration, advanced optimisation


First steps using ICOOL simulations:

- ✓ Python-wrapper to ease generation of input files and tracking results analysis
- ✓ Linear optics matching
- ✓ Transverse cooling using Liquid Hydrogen absorber
- No re-acceleration
- Studied transverse aspects only

High field – low energy muon ionization cooling channel Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer Phys. Rev. ST Accel. Beams **18**, 091001 – Published 4 September 2015

E. Fol, C.T. Rogers, J. Schieck, D. Schulte, and B. Stechauner,

"Automated Design and Optimization of the Final Cooling for a Muon Collider", in <u>Proc. IPAC'22</u> E. Fol, C. Rogers, D. Schulte, "Machine Learning-Based Modelling of Muon Beam Ionization Cooling", in <u>Proc. IPAC'22</u>

International UON Collider

ollaboration

Baseline Design and simulation tools

Baseline: MAP study

- Starting beam parameters: $\epsilon_{\perp} = 300 \mu m$, $\epsilon_{\parallel} = 1.5 mm$, $\sigma t = 50 mm$, $\sigma E = 3.2 MeV$
- High-field magnets 25—32 T, beam momenta ranging from 135 MeV/c to 70 MeV/c
- Achieved in previous studies: ε_{\perp} = 55 µm, with ε_{\parallel} = 76 mm, transmission of 50%
- Target is $\varepsilon_{\perp} = 25 \mu m$: should be possible to achieve with stronger focusing fields, alternative absorber configuration, advanced optimisation

First steps using ICOOL simulations:

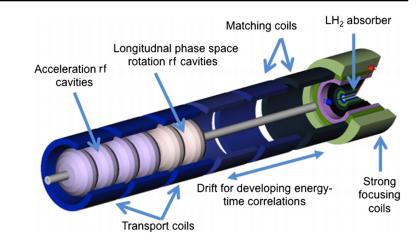
- ✓ Python-wrapper to ease generation of input files and tracking results analysis
- ✓ Linear optics matching
- ✓ Transverse cooling using Liquid Hydrogen absorber
- ► No re-acceleration
- Studied transverse aspects only

Towards integrated Final Cooling design:

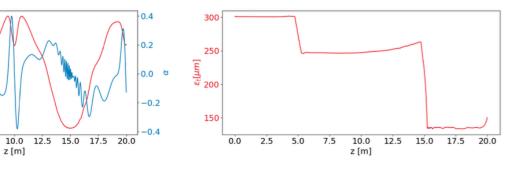
- RF-Track (developed by A. Latina): <u>https://gitlab.cern.ch/rf-track/download</u> ٠
- Includes collective effects, relevant lattice elements, python and octave interface
- Specific ionisation cooling effects have been recently added (multiple scattering, muon decays)
- Allows simulation and optimization of a full cooling cell, including solenoid fields, absorbers and RF

β [cm]

2.5


0.0

5.0


7.5

z [m]

→ Further presented studies are focused on RF-Track simulations (thanks to A. Latina)

High field – low energy muon ionization cooling channel Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer Phys. Rev. ST Accel. Beams 18, 091001 – Published 4 September 2015

Design optimisation strategy

MInternational UON Collider Collaboration

- I. Analytical cooling model for "backwards" optimisation starting from final $\epsilon_{\perp} = 25 \mu m$
- Provides starting momenta and absorber lengths for all cells
- II. Optimize high-field solenoid and matching coils to ensure efficient transverse cooling
- Mitigates emittance blow up in the fridge fields and controls the optics in absorber region

III. Simplified model for the optimization of **bunch**rotation and re-acceleration

 Provides drifts and rotation "kicks" needed to mitigate the increase of longitudinal emittance, initial estimates for RF- system design

The is the

Current work in progress

IV. Integrated **end-to-end simulation** of the complete cooling channel using RF-Track

- RF frequencies, gradients, and lengths derived from optimised estimations
- Considering different RF-system options (e.g. multi-harmonics RF)

Design optimisation strategy

MInternational UON Collider Collaboration

- I. Analytical cooling model for "backwards" optimisation starting from final $\epsilon_{\perp} = 25 \mu m$
- Provides starting momenta and absorber lengths for all cells

Current work in progress

IV. Integrated **end-to-end simulation** of the complete cooling channel using RF-Track

- RF frequencies, gradients, and lengths derived from optimised estimations
- Considering different RF-system options (e.g. multi-harmonics RF)

- II. Optimize high-field solenoid and matching coils to ensure efficient transverse cooling
- Mitigates emittance blow up in the fridge fields and controls the optics in absorber region

III. Simplified model for the optimization of **bunch**rotation and re-acceleration

 Provides drifts and rotation "kicks" needed to mitigate the increase of longitudinal emittance, initial estimates for RF- system design

-1- :-

Applying numerical optimization and Machine Learning techniques:

Comparison of different algorithms and proof of concept for various
 ML-based techniques for design optimisation:

"Machine Learning in accelerators operation and design", IFAST 2nd annual meeting

- BOBYQA: derivative-free and fast executable
- **Bayesian Optimization**: converges much faster compared to e.g. differential evolution algorithm, provides uncertainty estimation
- **Surrogate models** to obtain initial guesses for optimisers or to allow "backwards" optimisation
- Introduction of an **anomaly detection** method for identification of bunch cuts.

Initial beam momenta and absorber thickness

International UON Collider ollaboration

I. Analytical cooling model for "backwards" optimisation starting from final $\epsilon_{\perp}=25\mu m$

$$\frac{d\epsilon_{\perp}}{ds} = -\frac{\epsilon_{\perp}}{\beta^2 E} \frac{dE}{ds} + \frac{\beta_{\perp} E_s^2}{2\beta^3 m c^2 L_R E}$$

$$\frac{dE}{ds} = 4\pi N_A \rho r_e^2 m_e c^2 \frac{Z}{A} \left[\frac{1}{\beta^2} \ln\left(\frac{2m_e c^2 \gamma^2 \beta^2}{I(Z)}\right) - 1 - \frac{\delta}{2\beta^2} \right]$$

 Provides starting momenta and absorber lengths for all cells

and the second states

• 40 T, Liquid hydrogen absorber, initial beam: $P_z = 135 MeV/c$, $\epsilon_{\perp} = 300 \mu m$, $\epsilon_{\parallel} = 1.5 mm$, $\sigma t = 50 mm$, $\sigma E = 3.2 MeV$

Cell	$P_z [{\rm MeV/c}]$	Absorber [cm]	$\epsilon_{\perp,start}[\mu m]$	$\epsilon_{\perp,end}$	$P_{z,end}$
14	65	14	40	24.5	10
13	70	15	50	40	55.5
12	76	13	70	50	40
11	75	15	85	70	53.5
10	89.2	22	100	85	67.5
9	92.6	21	115	100	74
8	110	25	125	114.6	93.6
7	115	34	140	124.7	93.4
6	124.5	37	155	140	103.4
5	120	36	175	155	98.5
4	127.5	43	200	175	102.4
3	130	40	225	200	108.5
2	125	45	260	220	99
1	135	55	300	250	106

• Note: this assumes *ideal optics matching* and *control of longitudinal parameters*

• Transmission is not included

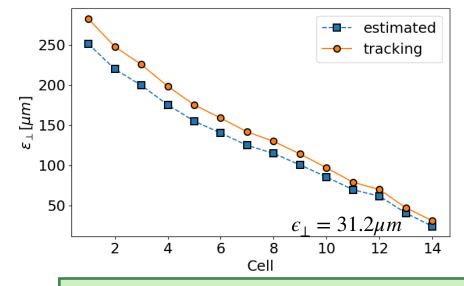
Initial beam momenta and absorber thickness

International UON Collider Ilaboration **I. Ana "bac**

I. Analytical cooling model for "backwards" optimisation starting from final $\epsilon_{\perp}=25\mu m$

$$\frac{d\epsilon_{\perp}}{ds} = -\frac{\epsilon_{\perp}}{\beta^2 E} \frac{dE}{ds} + \frac{\beta_{\perp} E_s^2}{2\beta^3 m c^2 L_R E}$$

$$\frac{dE}{ds} = 4\pi N_A \rho r_e^2 m_e c^2 \frac{Z}{A} \left[\frac{1}{\beta^2} \ln\left(\frac{2m_e c^2 \gamma^2 \beta^2}{I(Z)}\right) - 1 - \frac{\delta}{2\beta^2} \right]$$

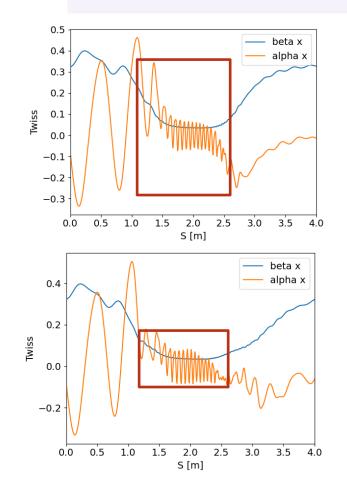

 Provides starting momenta and absorber lengths for all cells

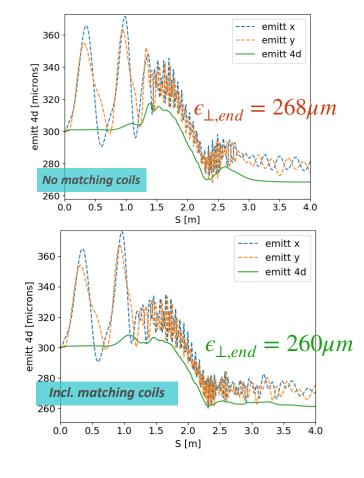
• 40 T, Liquid hydrogen absorber, initial beam: $P_z = 135 MeV/c$, $\epsilon_{\perp} = 300 \mu m$, $\epsilon_{\parallel} = 1.5 mm$, $\sigma t = 50 mm$, $\sigma E = 3.2 MeV$

Cell	$P_z [{\rm MeV/c}]$	Absorber [cm]	$\epsilon_{\perp,start}[\mu m]$	$\epsilon_{\perp,end}$	$P_{z,end}$
14	65	14	40	24.5	10
13	70	15	50	40	55.5
12	76	13	70	50	40
11	75	15	85	70	53.5
10	89.2	22	100	85	67.5
9	92.6	21	115	100	74
8	110	25	125	114.6	93.6
7	115	34	140	124.7	93.4
6	124.5	37	155	140	103.4
5	120	36	175	155	98.5
4	127.5	43	200	175	102.4
3	130	40	225	200	108.5
2	125	45	260	220	99
1	135	55	300	250	106

• Note: this assumes *ideal optics matching* and *control of longitudinal parameters*

• Transmission is not included

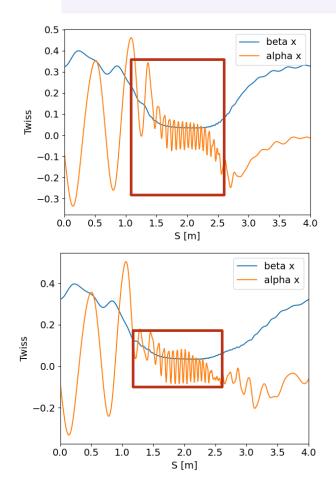

 ✓ Tracking simulations using optimised parameters confirm the potential for lower emittance (compared to the baseline studies)

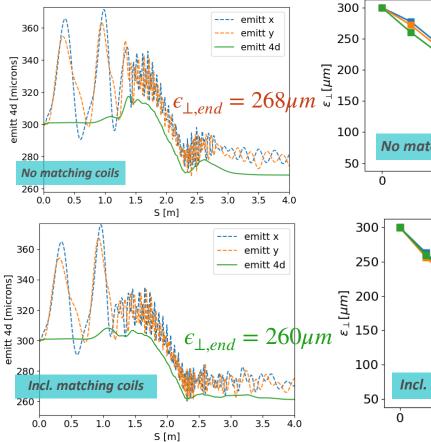


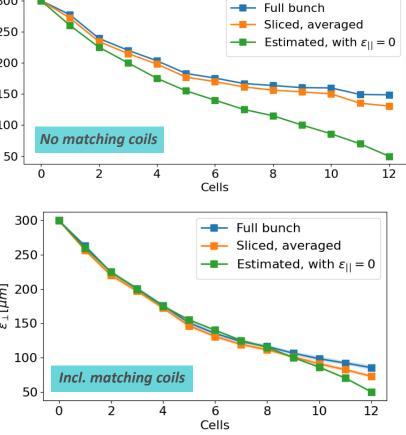
Optics matching

MInternational UON Collider Collaboration

II. Optimize high-field solenoid and matching coils to ensure efficient transverse cooling Mitigates emittance blow up in the fridge fields and controls the optics in absorber region

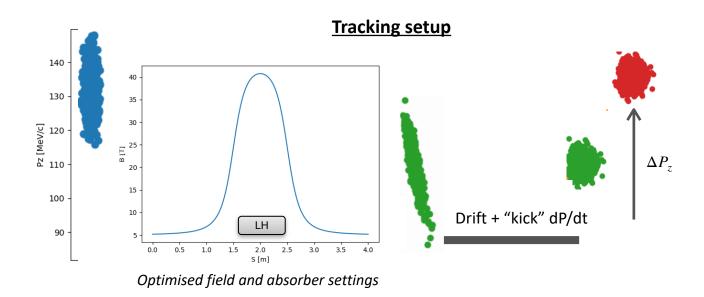



Optics matching


MInternational UON Collider Collaboration

II. Optimize high-field solenoid and matching coils to ensure efficient transverse cooling Mitigates emittance blow up in the fridge fields and controls the optics in absorber region

Indicates that the **optics control is crucial** to avoid emittance blow up and **achieve desired cooling performance**



Collaboration

Control of bunch length and energy spread

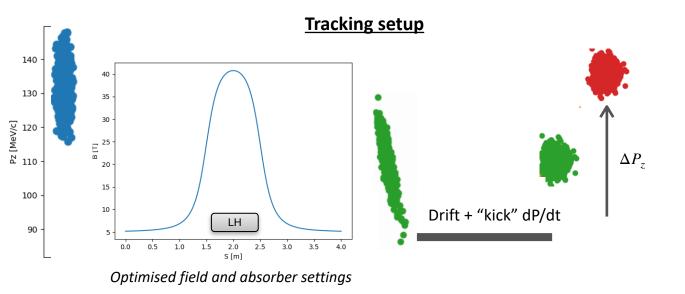
III. Simplified model for the optimization of **bunch** rotation and re-acceleration

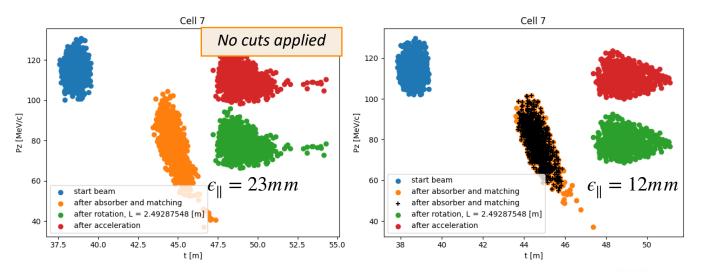
 Optimise drift length (to develop a correlation) and rotation (to reduce the energy spread)

The Barriet

The in the

Control of bunch length and energy spread

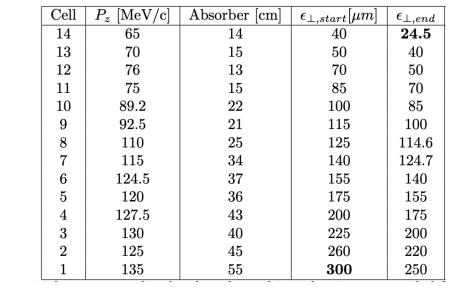

MInternational UON Collider Collaboration


III. Simplified model for the optimization of **bunch**rotation and re-acceleration

 Optimise drift length (to develop a correlation) and rotation slope (to reduce the energy spread)

Problem: "Outlying" particles

- Important to "clean" the beam to estimate the correlation to be corrected
 - Choice of particles included in the bunch affects the rotation slope optimisation
 - Too high emittance can be caused by a few "outliers"
 - 3 sigma-cut not always reliable, especially towards the end of the channel
 - "Anomaly detection" approach cut off 1% of points which are further away (considering all 6 dimensions in phase space)


Complete Final Cooling channel: results

MInternational UON Collider Collaboratior

Optimised towards longitudinal emittance reduction

Cell	Drift [m]	f [MHz]	G [MV/m]	$\epsilon_{ }[mm]$	σE	$\sigma_t \; [m mm]$
1	0.17	123	11.1	2.5	1.7	122
2	0.61	142	11.9	3.7	2.1	105
3	0.28	118	10.9	3.5	2.5	126
4	0.95	72	8.5	5.8	3.5	210
5	0.2	91	9.5	7.5	4.8	296
6	0.21	65	8	9.1	4.7	232
7	0.61	35	6	12.1	3.6	431
8	0.91	25	5	13.8	3.0	593
9	0.44	18	4.2	20	3.1	828
10	0.5	12	3.5	32	3.4	1248
11	1.29	6.5	2.5	61	5.1	2380
12	0.49	5.3	2.3	80.4	5.3	2870
13	1.0	5.7	2.4	77	4.0	2630

- Scaling for the estimates of RF frequencies and gradients based on optimised simplified model: $\sigma_t = \lambda/20, G = 1.2\sqrt{f}$
- Will be further optimised

the second s

Complete Final Cooling channel: results

 σE

1.7

2.1

2.5

3.5

4.8

4.7

3.6

3.0

3.1

3.4

5.1

5.3

4.0

 $\sigma_t \, [\mathrm{mm}]$

122

105

126

210

296

232

431

593

828

1248

2380

2870

2630

 $\epsilon_{||}[mm]$

2.5

3.7

3.5

5.8

7.5

9.1

12.1

13.8

20

32

61

80.4

77

Cell

1

 $\mathbf{2}$

3

4

 $\mathbf{5}$

6

7

8

9

10

11

12

13

Drift [m]

0.17

0.61

0.28

0.95

0.2

0.21

0.61

0.91

0.44

0.5

1.29

0.49

1.0

f [MHz]

123

142

118

72

91

65

35

25

18

12

6.5

5.3

5.7

Optimised towards longitudinal emittance reduction

G [MV/m]

11.1

11.9

10.9

8.5

9.5

8

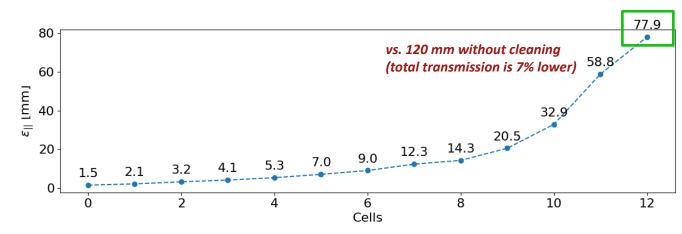
6

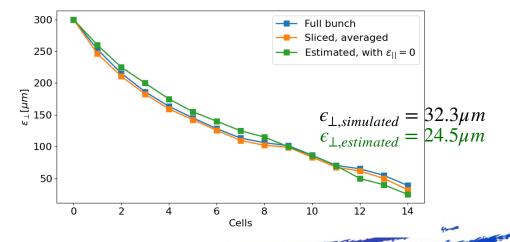
 $\mathbf{5}$

4.2

3.5

2.5


2.3


2.4

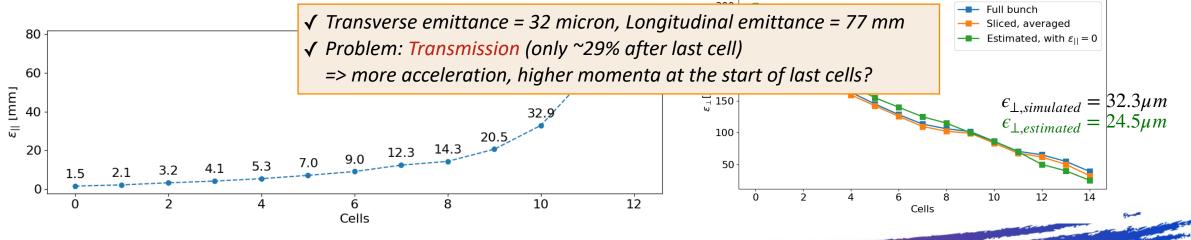
Absorber and momenta requirements for transverse cooling

Cell	$P_z \; [{\rm MeV/c}]$	Absorber [cm]	$\epsilon_{\perp,start}[\mu m]$	$\epsilon_{\perp,end}$
14	65	14	40	24.5
13	70	15	50	40
12	76	13	70	50
11	75	15	85	70
10	89.2	22	100	85
9	92.5	21	115	100
8	110	25	125	114.6
7	115	34	140	124.7
6	124.5	37	155	140
5	120	36	175	155
4	127.5	43	200	175
3	130	40	225	200
2	125	45	260	220
1	135	55	300	250

Tracking through the entire channel, using optimal solenoid fields settings

Complete Final Cooling channel: results

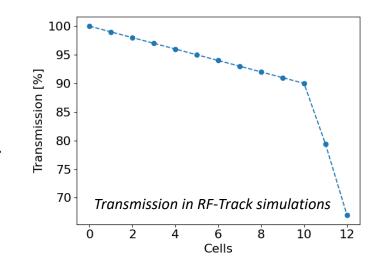
MInternational UON Collider Collaboratior


Optimised towards longitudinal emittance reduction

Absorber and momenta requirements for transverse cooling

Cell	Drift [m]	f [MHz]	G [MV/m]	$\epsilon_{ }[mm]$	σE	$\sigma_t \; [\mathrm{mm}]$
1	0.17	123	11.1	2.5	1.7	122
2	0.61	142	11.9	3.7	2.1	105
3	0.28	118	10.9	3.5	2.5	126
4	0.95	72	8.5	5.8	3.5	210
5	0.2	91	9.5	7.5	4.8	296
6	0.21	65	8	9.1	4.7	232
7	0.61	35	6	12.1	3.6	431
8	0.91	25	5	13.8	3.0	593
9	0.44	18	4.2	20	3.1	828
10	0.5	12	3.5	32	3.4	1248
11	1.29	6.5	2.5	61	5.1	2380
12	0.49	5.3	2.3	80.4	5.3	2870
13	1.0	5.7	2.4	77	4.0	2630

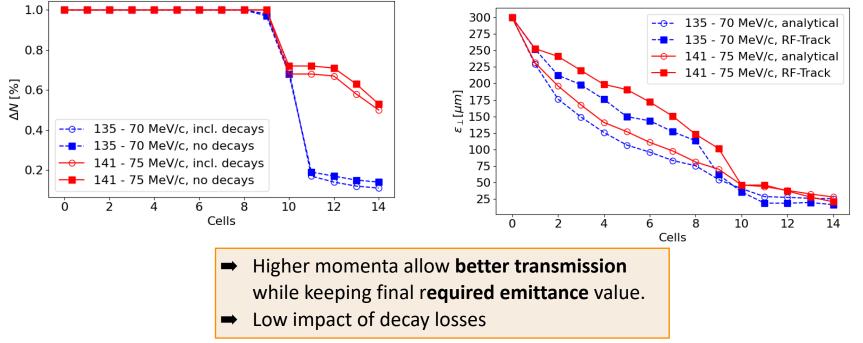
Cell	$P_z [{\rm MeV/c}]$	Absorber [cm]	$\epsilon_{\perp,start}[\mu m]$	$\epsilon_{\perp,end}$
14	65	14	40	24.5
13	70	15	50	40
12	76	13	70	50
11	75	15	85	70
10	89.2	22	100	85
9	92.5	21	115	100
8	110	25	125	114.6
7	115	34	140	124.7
6	124.5	37	155	140
5	120	36	175	155
4	127.5	43	200	175
3	130	40	225	200
2	125	45	260	220
1	135	55	300	250

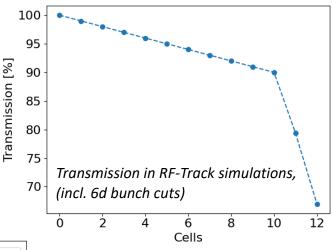

Tracking through the entire channel, using optimal solenoid fields settings

Initial beam momenta and absorber thickness

- Starting momenta in cooling cells are ranging from 135 MeV/c to 65 MeV/c to 65 MeV/c
 - High drop in transmission in the last cells: caused by low initial energy?
 - How big is the **impact of decays** due to the muon lifetime?
 - → Re-optimisation of absorber lengths and initial momenta in a higher range.

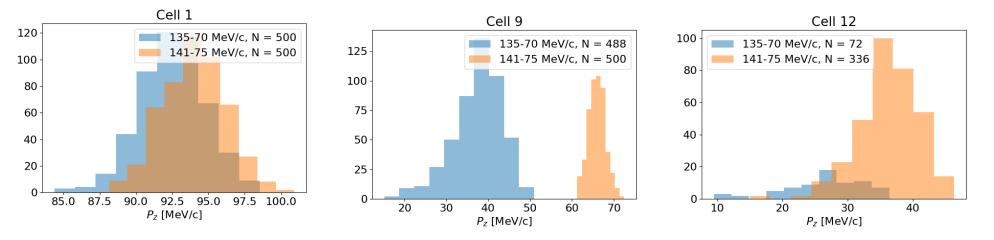
The is the




ollaboration

Initial beam momenta and absorber thickness

- Starting momenta in cooling cells are ranging from 135 MeV/c to 65 MeV/c
 - High drop in transmission in the last cells: caused by low initial energy?
 - How big is the **impact of decays** due to the muon lifetime?
 - → Re-optimisation of absorber lengths and initial momenta in a higher range.



Initial beam momenta and absorber thickness

MInternational UON Collider Collaboration

Momentum distribution in the bunch after passing through the LH absorber

att in the

- Slower particles are lost and cause the transmission reduction towards the end of the channel
- Crucial for the optimisation of the optimal cooling path
- ➡ Re-optimisation following the presented strategy using higher initial momenta in progress.

- Demonstrated a strategy for the optimisation of final cooling design
- Identification of suitable ML techniques and their integration into optimisation framework
- Values below the baseline results achieved in (simplified) simulations
- Identified bottlenecks and found mitigation approaches
 - significance of optics matching,
 - transmission to be considered in optimal cooling path definition)
- Parametrisation of RF-systems using the optimised bunch rotation and re-acceleration parameters
- Consideration of feasible RF-design options: e.g. multi-harmonics RF (allows the use of higher frequencies, shorter acceleration path is possible.)
- End-to-end simulation using re-optimized parameters for 140-75 MeV/c beam momenta range.

at the second