

Muon Collider Magnet Technology Options Internal Review

L. Bottura, L. Quettier and S. Fabbri, on behalf of the MuCol Task Leaders and the Muons Magnets Working Group 21/6/2023

Scope of the review

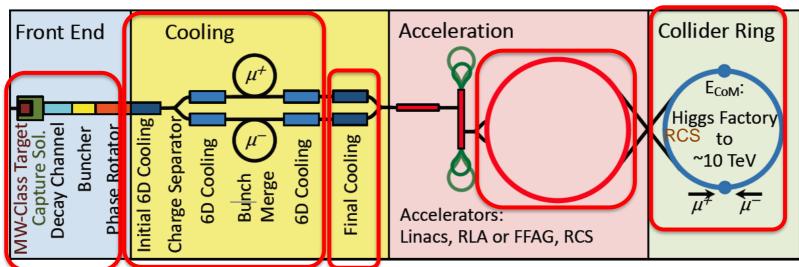
- The Muon Collider study aims at preparing a (pre)conceptual design for the next iteration of the European Strategy (2025-2027), which will include a consistent accelerator complex design
- The present baseline poses significant challenges and calls for advances in magnet technology
- We have formulated a *plan of action*, and selected specific solutions that appear to be **attractive for the muon collider**, **but not only**

We are presently at the beginning of this work, and we wish to have your opinion on the plan and the choices taken for the study

Questions to the experts

- Q1: Are all critical magnet systems identified, including the true performance drivers, with no missing area ?
- Q2: Is the evaluation of technology options complete and appropriate ? Specifically, are there viable options that have not been considered, or not evaluated correctly ?
- Q3: Are the selection of options to be studied in detail, and the ranking of priorities, justified and appropriate for the objectives of a pre-conceptual report, due by end 2025 ?
- Q4: Is the work program proposed matching the above ambitions ?

The result will be a report that we can release as part of the study (both IMCC and MuCol)


Muon Collider magnet "specs"

Target solenoids Field: 20 T... 2T Bore: 1200 mm Length: 18 m Radiation heat: $\approx 4.1 \text{ kW}$ Radiation dose: 80 MGy

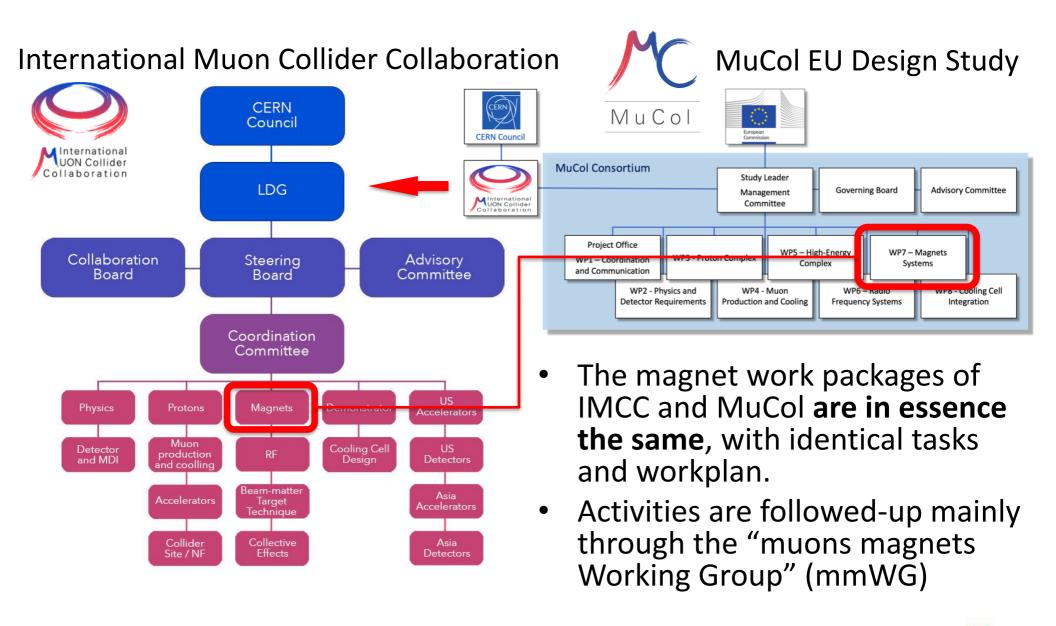
6D Cooling solenoids Field: 4 T ... 19 T Length: 1 km (x 2) Radiation heat: TBD Radiation dose: TBD

Accelerator magnets Field: ±1.8 T (NC), < 10 T (SC) Rate: 400 Hz (NC), SS (SC) Bore: 90 mm ... 600 mm Bore: 100 mm(H) x 30 mm(V) Length: 3 m ... 5 m (x 1500) Radiation heat: $\approx 3 \text{ W/m}$ Radiation dose: TBD

Final Cooling solenoids Field: > 40 T (ideally 60 T) Bore: 50 mm Length: \approx 500 mm (x 17) Radiation heat: TBD Radiation dose: TBD

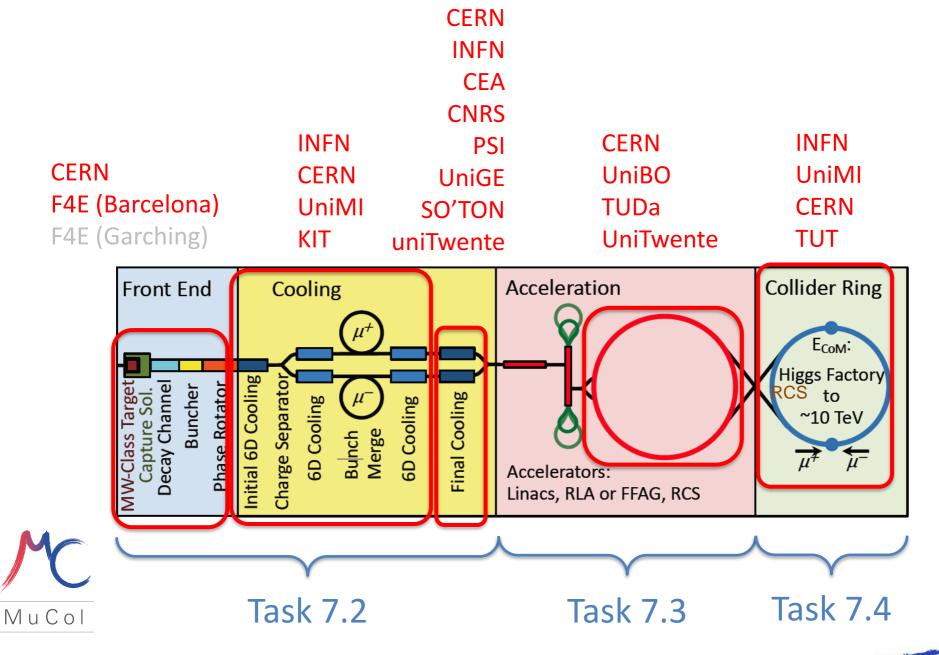
Collider ring magnets Field: 16 T peak (IR 20 T) Bore: 150 mm Length: 10 m ... 15 m (x 700) Radiation heat load: $\approx 5 \text{ W/m}$ Radiation dose: ≈ 20...40 MGy

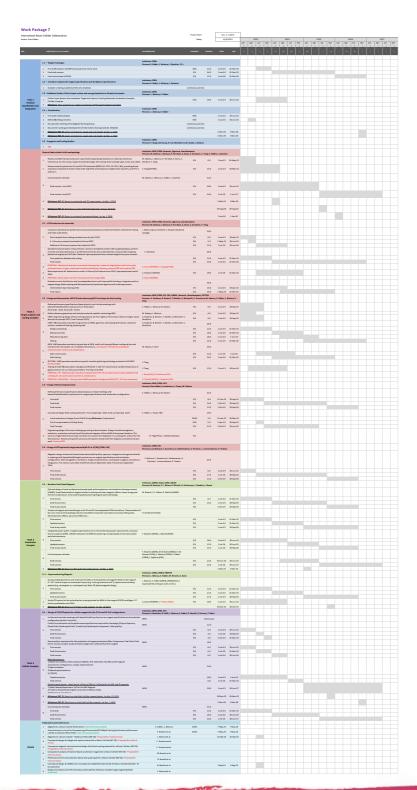
Muon Collider magnet "catalog"


Complex	Sector	Sub-Sector	r Magnet Type	Field	Gradient A	perture Ga	ıp Wid	th Lengt	n Number	Ramp time	Field rate	Homogeneity	Persistance	Beam powe deposition		echnology	Comments	Source
				(T)	(T/m)	(mm) (m	m) (mr	1) (m)	(-)	(s)	(T/s) / (T/m/s)	(units)	(units/s)	(kW/m)	Preferred Option	Other Options		
arget and Capture	Target Capture and decay channe	1	solenoid solenoid solenoid solenoid	15 5 20		2400 150 600		C	2 .5	1 21600 1 1 1 21600	0.0007 5.0000 0.0009			10	1 LTS D NC 5 HTS TBD	·	baseline 15 T, 2.4 m bore design, assumes 6 hours ramp-up time and 5 kW deposited total power baseline 5 T resistive insert option based on a HTS cable, reduced bore and shielding, operating at 1020 K	Parameters assumed in C.
	Chicane					860		100 0.:	18	41								Rogers past simulations
Cooling	Pre-Bunch-Merge	A1-1 A2-1 A3-1 A4-1	solenoid solenoid solenoid solenoid	2.4 3.5 4.8 6.1		900 820 540 440		100 0.: 130 0.: 110 0.: 140 0.1	26 2 11 4	64 21600 60 21600 28 21600 52 21600	0.0001 0.0002 0.0002 0.0003	100 100 100 100	0.1 0.1		TBD TBD TBD TBD		cell A1 cell A2 cell A3 cell A4	US MAP Baseline
	Post-Bunch-Merge	B1-1 B2-1 B3-1 B4-1 B4-2	solenoid solenoid solenoid solenoid solenoid	2.6 3.7 4.9		1540 1000 820 350 820			.5 36 37 1 92 1	40 21600 64 21600 08 21600 00 21600 00 21600	0.0001 0.0002 0.0002 0.0003	100 100	0.1 0.1 0.1		TBD TBD TBD TBD		cell B1 cell B2 cell B3 cell B4	
		B5-1 B5-2 B6-1 B6-2	solenoid solenoid solenoid solenoid	9.8 10.8		226 434 168 430		88 0 165 0.1 92 0	.1 1 96 1 .1 1	82 21600 82 54 21600 54	0.0005				TBD TBD		cell B5 cell B6	US MAP Baseline
		B7-1 B7-2 B8-1 B8-2	solenoid solenoid solenoid solenoid	12.5 13.6		100 420 90 280		74 0 145 0.1 65 0.1 80 0.1	17 1 12 1 08 1	00 21600 00 22 21600 22	0.0005				TBD TBD		cell B7 cell B8	
	Final Cooling	B8-3 Option 1	solenoid solenoid solenoid solenoid	30 40 60		500 TBD TBD TBD		C	.5 .5	22 17 21600 17 21600 17 21600	0.0014 0.0019 0.0028	100 100			0 HTS 0 HTS 0 HTS		baseline design from US-MAP HTS NI option, including aperture margin HTS NI option, including aperture margin	US MAP Baseline
Accelerator	RCS1 RCS2 RCS3		dipole dipole dipole dipole dipole	1.8 10 1.8 10 1.8		100 100	30	LOO 6.	.4 2 06 4 .6 2	32 7.35E-04 88 1000 32 1.80E-03 88 1000 32 1.80E-03	2448.980 0.010 1000.000 0.010 1000.000	10 10 10 10 10			NC LTS NC LTS NC			
	RCS4		dipole dipole dipole	1.8 10 1.8		100			.6 2	32 1.80E-03 88 1000 32 8.46E-03	0.010 212.716	10			LTS NC			
Collider	Arc IR		dipole quadrupole quadrupole quadrupole quadrupole quadrupole	10	300 466.32 376.93 300.71 191.41 214.03	150 171.4 212.2 266 417 411.2		13	2 2 2 .6 5	1000 4 1000 4 1000 4 1000 4 1000 4 1000	0.010 0.000 0.000 0.000 0.000 0.000	10 10 10 10		0.	5 HTS HTS HTS HTS HTS HTS HTS		IQF1 IQF1a IQF1b IQD1 IQF2	

 This is a first step towards building the machine configuration, as necessary to have the basis for a calculation of cost and power

Project organization




-1- :

Muon Collider magnet "team"

The plan

- Activities have been defined, discussed and listed
- Deliverables
 - D7.1 January 2026: Preliminary report on muon collider magnets
 - D7.2 January 2027: Consolidated report on muon collider complex magnets
- Milestones
 - M7.1 March 2024: Report on solenoids and TPL experiments
 - M7.2 March 2025: Report on RCS and HCS configurations
 - M7.3 October 2025: Workshop on ultra-high-field solenoids
 - M7.4 December 2025: Report on HTS fast-cycled magnets
 - M7.5 January 2026: Report on high-field collider magnet design
 - M7.6 February 2026: Report on solenoid conceptual design
 - M7.7 September 2026: Workshop on high-field collider magnets
 - M7.8 November 2026: Report on footprint, power and cost model
 - M7.9– November 2026: Report on R&D and impact

Logistics

- Open presentation session
 - Wednesday 21 June, 8:30-12:30
 - Pierre Lehmann Auditorium B. 200 IJCLab Orsay
- Panel closed session
 - Wednesday 21 June, 14:00-17:30
 - Salle Bleue B. 200 IJCLab Orsay
- Report and discussion at mmWG, comments and outstanding questions
 - Thursday 6 July, 15:00
 - Virtual meeting
- Open debrief at IMCC Design Meeting
 - Monday TBD, 16:00
 - Virtual meeting

-1-