

Muon Collider Magnet Technology Option for 6D cooling

Marco Statera, INFN LASA – S. Fabbri, CERN, J. Pavan, UNIM

Orsay ,21-06-2023

Outline 6D cooling

- Where in muon collider
- Magnet zoo
- Technology drivers and options
- objectives, schedule and team: what who and when are we doing

Muon Collider magnet "specs"

Target solenoids 6D Cooling solenoids **Final Cooling solenoids** Field: 20 T... 2T Field: 4 T ... 19 T Field: > 40 T (ideally 60 T) Bore: 1200 mm Bore: 90 mm ... 600 mm Bore: 50 mm Length: 18 m Length: 500 mm (x 17) Length: \approx 1 km (x 2) Radiation heat: $\approx 4.1 \text{ kW}$ Radiation heat: TBD Radiation heat: TBD Radiation dose: 80 MGy Radiation dose: TBD Radiation dose: TBD Cooling **Collider Ring** Acceleration Front End E_{CoM}: **TASK 7.2** Higgs Factory Cooling Charge Separato Phase Rotato Bunchei Cooling to Cooling Chann 6D Cooling ~10 TeV Bunch Merge 6D ecay Final Ъ-6D nitial Accelerators: Linacs, RLA or FFAG, RCS

432 solenoids

S

familie

coil

 $\frac{7}{20}$

Muon Collider magnet "catalog"

					Magnet								Ramp				Beam power	r
	Complex	Sector	Baseline	Magnet Type	technology	Field	Gradient A	Aperture	Gap	Width	Length I	Number	time	Field rate	Homogeneity	Persistance	deposition	Comments
						(T)	(T/m)	(mm)	(mm)	(mm)	(m)	(-)	(s)	(T/s) / (T/m/s)	(units)	(units/s)	(kW/m)	
						(-)	(.,)	()	()	()	()	()	(-)	(.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	()	((,	
																		baseline 15 T. 2.4 m bore design, assumes 6
																		hours ramp-up time and 5 kW deposited
	Target and Capture	Target	baseline	solenoid	LTS	15		2400			2	1	21600	0.0007	100		:	1 total power
		-	baseline	solenoid	NC	5		150			0.5	1	1	5.0000	100		10	0 baseline 5 T resistive insert
																		option based on a HTS cable, reduced bore
			option	solenoid	HTS	20		600			1.5	1	21600	0.0009	100	0.1	1	5 and shielding, operating at 1020 K
		Capture and decay channel		solenoid	TBD													
/	Caeling	Invitation Cooling	haaalina	م ا م م ا م	TDD	2.2		C00			2		21000	0.0001	100	0.1		
	Cooling	Ionization Cooling	baseline	solenoid		2.2		500			1 2 2	120	21600	0.0001	100	0.1		
			baseline	solenoid		3.4		200			1.32	130	21600	0.0002	100	0.1		
			baseline	solenoid	TBD	4.8		380			1	107	21600	0.0002	100	0.1		
			baseline	solenoid	TBD	22		264			0.8	88	21600	0.0003	100	0.1		cell A4
			baseline	solenoid	TBD	2.2		560			2.75	20	21600	0.0001	100	0.1		
			baseline	solenoid	IBD	3.4		480			2	32	21600	0.0002	100	0.1		call B2
			baseline	solenoid	IBD	4.8		360			1.5	54	21600	0.0002	100	0.1		call B3
			baseline	solenoid	TBD	6		280			1.27	50	21600	0.0003	100	0.1		call B4
			baseline	solenoid	IBD	9.8		180			0.806	91	21600	0.0005	100	0.1		call B5
			baseline	solenoid	IBD	10.5		144			0.806	//	21600	0.0005	100	0.1		call B6
			baseline	solenoid	TBD	12.5		98			0.806	50	21600	0.0006	100	0.1		call B7
			baseline	solenoid	IBD	13.6		90			0.806	61	21600	0.0006	100	0.1		call B8
		Final Cooling	baseline	solenoid	HTS	30		50			0.5	17	21600	0.0014	400			D baseline design from US-MAP
			minimal option	solenoid	HIS	40		60			0.5	1/	21600	0.0019	100	0.1		D HIS NI option, including aperture margin
			target option	solenola	HIS	60		60			0.5	1/	21600	0.0028	100	0.1		D HIS NI Option, including aperture margin
	Accelerator	RCS1		dipole	NC	1.8			30	100	8.08	432	7.35E-04	2448.980	10			
		RCS2		dipole	LTS	10		100			2.4	288	1000	0.010	10			
				dipole	NC	1.8			30	100	6.06	432	1.80E-03	1000.000	10			
		RCS3		dipole	LTS	10		100			2.6	288	1000	0.010	10			
				dipole	NC	1.8			30	100	5.05	432	1.80E-03	1000.000	10			
		RCS4		dipole	LTS	10		100			2.6	288	1000	0.010	10			
				dipole	NC	1.8			30	100	5.05	432	8.46E-03	212.716	10			
	Collider	Arc		dipole	HTS	10	300	150					1000	0.010	10		0.	5
		IR		quadrupole	HTS		466.32	171.4			2	4	1000	0,000	10			IQF1
				quadrupole	HTS		376.93	212.2			2	4	1000	0.000	10			IQF1a
				quadrupole	HTS		300.71	266			2	4	1000	0.000	10			IQF1b
				quadrupole	HTS		191.41	417			13.6	4	1000	0.000	10			IQD1
				quadrupole	HTS		214.03	411.2			5	4	1000	0.000	10			IQF2
											-							

By S. Fabbri and J. Pavan

21/6/2023

Marco Statera - Muon Collider Annual Meeting 2023

-

Selected features

We have a full catalogue based on US MAP original design (field on axis)

- 12 unique stages:
 - 4 cooling stages *before* bunch recombination (A1-A4)
 - 8 cooling stages after bunch recombination (B1-B8)
- Each stage has a repeating series of a cell type
- High field, very compact solenoids
- Each cell has symmetric solenoids of opposite polarity

Some stats:

- Fields on axis: 2 to 14 T
- Cell Lengths: 0.8 to 2.7 m
- Total length of all Stages: ~ 1 km
- Total number of solenoids: 2432

By S. Fabbri and J. Pavan

Technologies within cells

Three technologies at lower temperature (4 K) or one technology at 20 K

	[1]		[2	2]		[1] Inp	ut geometries	from US MA	P Study		[2] Calcula		Technology Options							
Stage	Cell Length [m]	Solenoids/Ce II	Peak Bz field on axis [T]	Stored Magnetic Energy [MJ]	Coil	Length [mm]	Radius [mm]	Thickness [mm]	Current Density [A/mm2]	Peak Bz Field in Coil (lattice configuration) [T]	Peak Bz Field in Coil (Single Cell) [T]	Maximum (+)Peak Hoop stress (see 1) [MPa]	Minimum (-) Longitudinal Stress [MPa]	Maximum (+) Radial Stress [MPa]	Minimum (-) Radial Stress [MPa]	Peak Longitudinal Force [MN]	NbTi (4 K)	Nb3Sn (4 K)	HTS (4 K)	HTS (20 K)
A1	2	4	2,4	5,38	A1-1	210	450	100	63,25	4,1	4,4	34,2	-16,6	0,0	-4,6	3,8	Х	Х	Х	Х
A2	1,32	2	3,5	15,35	A2-1	260	410	130	126,6	9,5	9,9	137,4	-60,2	0,0	-28,3	0,0		Х	Х	Х
A3	1	4	4,8	7,23	A3-1	110	270	110	165	9,4	10,2	138,1	-59,4	0,0	-28,5	10,9		Х	Х	Х
A4	0,8	4	6,1	8,39	A4-1	90	220	140	195	11,6	13,0	195,9	-77,6	0,0	-49,4	16,1		Х	Х	Х
B1	2,75	2	2,6	44,54	B1-1	500	770	150	69,8	6,9	7,2	94,5	-50,3	0,0	-13,5	7,9	Х	Х	Х	Х
B2	2	2	3,7	24,1	B2-1	360	500	150	90	8,4	9,0	113,9	-58,1	0,0	-20,1	7,7		Х	Х	Х
B3	1,5	2	4,9	29,83	B3-1	370	410	150	123	11,2	12,8	173,5	-160,1	0,0	-36,6	36,8		Х	Х	Х
D/	1 27	Л	6	24.4	B4-1	92	175	200	94	9,2	11,9	231,4	-27,0	19,7	-0,1	7,5		Х	Х	Х
D4	1,27	4	0	24,4	B4-2	320	410	240	70,3	7,8	8,8	65,5	-47,6	0,0	-23,5	7,4		Х	Х	Х
DE	0.906	Л	0.0	12.02	B5-1	100	113	88	157	13,9	18,7	336,1	-88,8	21,1	-0,7	5,5			Х	Х
55	0,800	4	5,8	12,05	B5-2	196	217	165	168	12,3	14,4	158,7	-137,3	0,2	-55,7	19,1		Х	Х	Х
DC	0.806	Л	10.9	Q 10	B6-1	100	84	92	185	14,2	18,9	313,8	-76,7	22,3	-1,4	4,3			Х	Х
БО	0,800	4	10,8	8,19	B6-2	177	215	160	155,1	10,3	12,3	117,8	-101,8	0,0	-43,1	14,7		Х	Х	Х
D7	0.806	Л	12 5	5 65	B7-1	100	50	74	198	14,3	18,4	244,2	-50,1	20,7	-1,1	1,4			Х	Х
Б7	0,800	4	12,5	5,05	B7-2	170	210	145	155	10,1	12,0	118,5	-87,1	0,0	-37,4	11,1		Х	Х	Х
					B8-1	120	45	65	220	15,1	16,9	118,5	-69,9	22,1	-3,0	1,5			Х	Х
B8	0,806	6	13,6	1,42	B8-2	80	140	80	135	6,2	6,3	109,8	-30,3	4,5	-2,4	2,0	Х	Х	Х	Х
					B8-3	100	250	120	153	6,2	3,4	41,2	-27,6	0,0	-22,9	1,4	Х	Х	Х	Х

By S. Fabbri

21/6/2023

To be investigated

We are defining technologies

- Conductor
- Operation condition, i.e. temperature an cooling method
- To be investigated
- Conductor performance
- Conductor configuration
- Field quality
- Thermal/mechanical configuration

Technologies 6D cooling solenoids

Technology	Pro's	Con's
LTS	Known technology (TRL 9)	Operating temperature
HTS ReBCCO Insulated	More compact than LTS/HTS Allows for operation at higher temperature Batch above 100 m demonstrated	R&D at low readiness (TRL 4/5) Quench detection protection Production of km batches to be demostrated
HTS ReBCCO Non-insulated	Most compact magnet winding Synergies with other fields of science and societal applications Batch above 100 m demonstrated Can profit from development by others (e.g. NHMFL)	R&D at low readiness (TRL 3/4/5) Ramping time and field stability need to be demonstrated Quench detection and protection Production of km batches to be demostrated
HTS BISSCO/IBS	Round wire demonstrated for BiSSCO	R&D at low readiness (TRL 3/4) for IBS Production lengths (?)

Technology drivers

Overall cooling effort (a.u.)

Muon Collider magnet "team"

CNRS UnigE SO'TON CERN INFN CEA PSI uniTwente

INFN CERN TUT

Muon Collider magnet "team"

- CERN-EP
 - · Contribution to development of HTS technology for UHF solenoids
 - Contact person: A. Dudarev
 - Baseline studies for HF solenoids
 - Engineering design
 - R&D pancakes
- PSI
- Contribution to target and cooling solenoids design and technology R&D
 - Instrumentation and analysis of NI coils (in synergy with other projects that provide the coils)
 - Powered samples to test mechanical limitations (NOTE: need to brainstorm)
 - Integrated conceptual target-magnet design, in close iteration loops with particleshower simulations
- Contact person: Dr. B. Auchmann

Instrumentation for test coils (vtap, protection schemes and devices) R&D pancakes

- University of Geneva
 - Measurements in support to R&D on HTS
 - Electro-Mechanical characterization and limits at high field (NOTE: need to brainstorm)
 - Contact person: Prof. C. Senatore

Characterization measurements and conductor review

INFN LASA

21/6/2023

- Critical current measurement
- Contact person: Dr. Marco Statera

Coordination

- Define reference geometries fo r small coils (L. Bottura) Design of test coils devices (together with CERN, CEA...) R&D pancakes
- Test of small coils

- University of Southampton
 - Design of solenoids and measurement of HTS properties
 - Test in background field (10 T, 110 mm)
 - Contact person: Prof. Y. Yang

Review of material options REBCO, Bi-2212, Bi-2223, IBS Evaluate current distribution in multi tape windings

Mechanical and electro-mechanical properties

- **R&D** pancakes
- Test of small coils
- University of Twente
 - Contribute to the design and conductor effort
 - HTS conductor design (both ReBCO and B2223) at the level of basic strand/tape, shape optimization and reinforcements
 - HTS smart innovative cabling to allow for higher current, current sharing redundancy and quench protection
 - HTS conductor characterization/review for limiting strain and cycling degradation

+ to in the

- HTS coil windings with controlled resistance to smartly balance conflicting requirements of ramp loss and quench stability
- Contact person: Prof. A. Kario

Mechanical and electro-mechanical properties

- KIT
- R&D on coils and tests
- Contact person: Dr T. Arndt Test coils winding and test, model development

Ongoing activities

- Tape characterization
- Preliminary design of coils and cell
 - Design of a HTS dipole for IRIS, Next Gen EU
 - Winding tests of small pancakes
 - Test of small pancakes (also in field)
 - Design of the RF test station (in collaboration with WP8)⁴
- Coil design for the cells
 - Field and forces
 - Integration of cooling system
 - Field quality definition and optimization

uctivity

IRIS

Test coils

- Test coils Identical/similar configurations used at CERN, INFN, PSI
- Geometry
- Configuration
- Tests self field and in field
- Validate handling procedures and models

60 mm inner diameter 20 mm and 60 mm thickness 4 mm and 12 mm tape width Single and double pancakes winding One- and two-in-hand winding Pancakes can be stacked in mini-coils

Conductor configurations

- Explore the Controlled-Insulation vs non-insulation solutions.
- Multi-tape winding is foreseen, including different materials and technologies to impact the inter-turn resistance.
- The goal of this campaign is to asses and improve the TRL of such technologies in magnet-like conditions.

Examples of target technologies: Metal-Insulated (MI), multi-tape NI, *multi-tape resistive layer + stabilizer.*

21/6/2023

Test of small coils

- Synergies with IRIS (NextGenerationEU)
 - 1. Operation at T in the range 10 K 30 K;
 - 2. Induction of flux densities in the tesla range
 - 3. Test in field up to 20+ T
 - 4. Non-round geometries (PNRR-IRIS project)
- The goal is to test magnet-like conditions for NI coils and further validate models.
- Target time: begin 2024

Coils are tested in CERN, INFN LASA, PSI, LNCMI, CEA

21/6/2023

RF test station

MInternational WON Collider Collaboration

Two stage

cryocooler

Thermal

shield

Vacuum

vessel

- Select and validate a technology and design options
- Design and commission a real size cell-like magnetic system
- Synergy between two WPs

Tie rods for repulsion and compression forces

SC HTS coils

Coil support

structure

RF cavity

Sc magnet/cryostat sketch by M. Castoldi & Stefano Sorti, UMIL & INFN-LASA

(RF drawing by Guillaume Ferrand –CEA Marco Statera - Muon Collider Annual Meeting 2023

Schedule general task 7.2

Review of conductor requirements and of material options started

			Today:		15/6	/2023		202	23			202	24			202	25			202	6			2027	,	
	· · · · · · · · · · · · · · · · · · ·						gen	apr 1	lug 1	ott	gen	apr	lug	ott	gen	apr	lug 1	ott	gen	apr	lug	ott	gen	apr	lug	ott
	OBJECTIVES (can be in Parallel)	COLLABORATORS	PROGRESS	MONTHS	START	END	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d	d
Ger	neral tasks related to this workpackage	Institutes: INFN, CERN, Utwente, Ugeneva, Usouthampton Persons: M. Statera, L. Bottura, H. Ten Kate, A. Kario, C. Senatore, Y. Yang, S. Fabbri, L. Quettier																								
1	Review and define broad conductor requirements (operating temperature, materials, electrical, mechanical, etc.) for various types of solenoids (target, 6D cooling, final cooling): tapes, wires, and cables.	M. Statera, L. Bottura, H. Ten Kate, A. Kario, C. Senatore, Y. Yang	0%	6,0	1-Jan-23	30-May-23																				
2	Review material options for HF and UHF HTS solenoids (REBCO, Bi-2212, Bi-2223, IBS), providing broad evaluation of potential of each material for high field and temperature higher than liquid He, with Pro's and Con's	Y. Yang (SO'TON)	0%	15,0	1-Jan-23	30-Mar-24																				
	Cost and power estimate	M. Statera, L. Bottura, S. Fabbri, L. Quettier		54,0																						
3	Draft version June 2025		0%	30,0	1-Jan-23	30-Jun-25																				
	Final version June 2027		0%	24,0	1-Jul-25	1-Jun-27																				
4	Milestone (M7.1): Report on solenoids and TPL experiments - by Mar. 1 2024				1-Mar-24	1-Mar-24																				
5	Milestone (M7.3): Workshop on ultra-high-field solenoids - by Aug. 30 2025				30-Aug-25	30-Aug-25																				
6	Milestone (M7.6): Report on solenoid conceptual design - by Jan. 1 2026				1-Jan-26	1-Jan-26																				

Milestones preparation started: workshop in UHF Solenoids, technology and design reviews

21/6/2023

Schedule conductor R&D

Conductor characterization: Ic vs stress/strain, angle, field...

Procurement of updated tapes available in engineering lengths ongoing Meaurements in UniGE UniTwente SO'TON

Modeling and measurements of magnetization and current distribution in stacks and joints

21/6/2023

Marco Statera - Muon Collider Annual Meeting 2023

International UON Collider

2027

2026

lug

apr

at is

Schedule 6D solenoids

Specification of parameters and reference geometries for the solenoids (1 km) Performance, Cost, Sustainability and series production compatibility

								2025			LOLI				2025			20	20			2021		
							gen ap	r lug	ott	gen	apr l	ig ot	t ger	apr 1	lug 1	ott	gen	apr	lug 1	ott	gen	apr	lug	ott
2.2	- Design and demonstrate UHF HTS solenoids using NI/PI technique for final cooling	Institutes: INFN, CERN, PSI, CEA, LNSMI, Utwe Persons: A. Dudarev, B. Bordini, T. Mulder, A. Bottura, Y. Tang	nte, Usoutham Bertarelli, C. A	npton, SO'TO ccettura, M.	N Statera, S. Fa	ıbbri, L.												-				-		
1	Define performance specifications (beam physics), and initiate meetings with beam/shield/absorber/cryo/vacuum/ on these specs (First draft - 2023, final draft - 2025)	S. Fabbri, L. Bottura, M. Statera	0%	9,0	<mark>1</mark> -Jan-23	30-Sep-23																		
2	Define reference geometries and estimate material needs for technology R&D	M. Statera, L. Bottura	0%	4,0	1-Jan-23	30-Apr-23																		
3	CERN - Engineering design of final cooling solenoid, 40 T (or higher), 50 mm bore, 500 mm length, stand-alone (First concept 2023, Final Concept 2025)	A. Dudarev, B. Bordini, T. Mulder, A. Bertarelli, C. Accettura	0%	9,0	1-Jan-23	30-Sep-23																		
4	CERN - R&D pancakes manufacturing and test at CERN, geometry and loading alternatives, resistance control, mechanical testing, powering test	A. Dudarev, B. Bordini, T. Mulder, A. Bertarelli, C. Accettura		36,0																				
	Design and tooling		0%	12,0	1-Jan-23	31-Dec-23																		
4	Mechanical tests		0%	18,0	1-Jan-24	31-Dec-24																		
	Pesign and demonstrate UHF HTS solenoids using NI/PI technique for final cooling lefine performance specifications (beam physics), and initiate meetings with eam/shield/absorber/cryo/vacuum/ on these specs "irst draft - 2023, final draft - 2025) lefine reference geometries and estimate material needs for technology R&D ERN - Engineering design of final cooling solenoid, 40 T (or higher), 50 mm bore, 500 mm leng tand-alone (First concept 2023, Final Concept 2025) ERN - R&D pancakes manufacturing and test at CERN, geometry and loading alternatives, esistance control, mechanical testing, powering test Design and tooling Mechanical tests Manufacturing start Testing NFN - R&D pancakes manufacturing and test at INFN, small coils having different configuration ind characteristics (insulated, non-insulated, dimensions,). Proposal: Provide test windings for haracterization and test at collaborators Start construction Start testing SOTTON) – R&D pancakes manufacturing with insulation/potting technology as tested in SuCARD2 (timeline TBD) "esting of small R&D pancakes in background field (10 T, 100 mm maximum) at variable emperature in gaseous helium, for currents up to 1500 A - first tests mid 2024 PROPOSAL: PSI - R&D pancakes manufacturing and test at PSI. Share advances and make variable small windings for characterization and test at collaborators ROPOSAL: CEA/LNCMI – Testing of small R&D pancakes in background field (20 T, 120 mm winnum)		0%	18,0	1-Jun-24	1-Jun-25																		
	Testing		0%	24,0	1-Jan-25	31-Dec-26																		
5	NFN - R&D pancakes manufacturing and test at INFN, small coils having different configurations and characteristics (insulated, non-insulated, dimensions,). Proposal: Provide test windings for characterization and test at collaborators	M. Statera, S. Sorti		36,0								1												
5	Start construction		0%	12,0	1-Jul-23	1-Jul-24																		
	Start testing		0%	24,0	1-Jan-24	31-Dec-25																		
6	(SO'TON) – R&D pancakes manufacturing with insulation/potting technology as tested in EuCARD2 (timeline TBD)	Y. Tang																						
7	Testing of small R&D pancakes in background field (10 T, 100 mm maximum) at variable temperature in gaseous helium, for currents up to 1500 A - first tests mid 2024	Y. Tang	0%	12,0	1-Jun-23	30-Jun-24																		
8	PROPOSAL: PSI - R&D pancakes manufacturing and test at PSI. Share advances and make available small windings for characterization and test at collaborators	J. Kosse (PSI), B. Auchmann (PSI)																						
9	PROPOSAL: CEA/LNCMI – Testing of small R&D pancakes in background field (20 T, 120 mm	X. Chaud (LNCMI), L. Quettier (CEA)																						

R&D on smal coils and cabling options Test in self field and in field – CERN, INFN LASA, PSI, LNCMI, CEA 21/6/2023

Deliverables

 T_0 March 2023

T₀+ 20 months M7.3 Workshop on Ultra High Field Solenoids

T₀+ 33 months D 7.1 Intermediate Report

T₀+ 45 months D 7.2 Consolidated report

Higher TRL allows civil application

Example of an application having the same pillars : Performance, HITB Cost, Sustainability Heavy Ion Therapy Research Integration hadron therapy MONITOR IFAST **OUADRUPOLE** NORMAL CONDUCTING **SPOOL PIECE** OUADRUPOLE CORRECTOR CRYOSTAT Superconducting COLD-WARM TRANSITION BENDING DIPOLE Gantry SCANNING MAGNETS By E. Felcini, CNAO 21/6/2023 Marco Statera - Muon Collider Annual Meeting 2023

Conclusion

- An overview of the required coils
 - 12 cells
 - 18 different coils
 - 1 km of 6D cooling
- We set the driving parameters and the technology we are aiming to
- A full R&D program for tape characterization and conductor development
- Focus on modeling (magnetization, current distribution...)
- Many synergies in the project and in other applications
- Performance-Cost-Sustainability togheter with compatibility with series production

THANKS