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Critical systems and main- specifications
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The powering system is very interlinked with the
resistive magnets design
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The key performance
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Evaluation of technology options
Technology __[Pros _________________[Con’s

Full Wave
resonance
powering scheme

Commutated
resonance
powering scheme

Capacitor as
storage elements

Spatial harmonic
distribution

Minimization of storage energy

Power electronics based on thyristors.
Example (with smaller power) available
in the literature.

Unipolar only capacitor excitation.
Higher energy density
More versatile schema with possibility

to modify the Bref shape within a range.

No inductive energy store components
are required

Very fast discharge and very high
current peaks are possible, particularly
in plastic capacitors

Simpler pure sinusoidal discharge
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Low energy density in capacitor
dimensioning

Low versatility towards
changing of the operating
conditions.

The control of the inter-sector
tracking is more complicated.
Higher saturation of magnet is
in general required

Important R&D for the
development of an IGBT/IGCT
based switching leg.

Possibly higher losses on
magnets (depending upon final
layout)

Particularly with voltage polarity
reversal, the correct energy
density is difficult to estimate.

Not clear how we should
consider the integral field at
different harmonics
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Selected options and priorities ranking &
SN
Presently both power schemes will be studied until the preliminary calculation

will clearly reveal the best one in terms of cost and control capability;
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Selected options and priorities ranking &
S

Presently both power schemes will be studied until the preliminary calculation

will clearly reveal the best one in terms of cost and control capability;

Circuital simulation will be carried on to better frame the control problem.

To this goal it is of paramount importance to have an idea of the accuracy that
will be required. This input should come form the physics studies.
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Selected options and priorities ranking &
S it

Presently both power schemes will be studied until the preliminary calculation

will clearly reveal the best one in terms of cost and control capability;

Circuital simulation will be carried on to better frame the control problem.
To this goal it is of paramount importance to have an idea of the accuracy that
will be required. This input should come form the physics studies.

Simplified magnet models for the calculation of the losses and the electric
equivalents are under design. The use of machine learning techniques are
under discussion as a mean to determine losses model of the magnets.
Magnet models will be progressively employed in powering-magnets
optimizators that will guide the final technical choices for both the systems.

Design of the IGCT/Thyristors switch shall proceed as the final power scheme
layout becomes better defined
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Magnetic measurements of materials at CERN: why, what, and how

In parallel to all above, magnetic material characterization tests should be
organized. Methodology under discussion
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Selected options and priorities ranking &
Sl

Presently both power schemes will be studied until the preliminary calculation

will clearly reveal the best one in terms of cost and control capability;

Circuital simulation will be carried on to better frame the control problem.
To this goal it is of paramount importance to have an idea of the accuracy that
will be required. This input should come form the physics studies.

Simplified magnet models for the calculation of the losses and the electric
equivalents are under design. The use of machine learning techniques are
under discussion as a mean to determine losses model of the magnets.
Magnet models will be progressively employed in powering-magnets
optimizators that will guide the final technical choices for both the systems.

Design of the IGCT/Thyristors switch shall proceed as the final power scheme
layout becomes better defined

In parallel to all above, magnetic material characterization tests should be
organized. Methodology under discussion




Task3 working plan L
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Task3.1: Resistive magnets and power system
e  Optimal design of resistive dipoles and quadrupole with emphasis on minimization of energy content and losses. Basic
effect of the vacuum chamber should be considered. Simplified analytical model will also developed to be used within
the full optimization
e Who: (UNIBO: M. Breschi). When: first version January 2024; draft final version September 2025; final study
results September 2026

e Analysis of magnet optimized designs with 2D and 3D time dependent FEM simulations. These models will focus on
most promising design options and address important calculations as losses, field quality, electrodynamic effects,
saturation effects etc...

e Who (TUDa H. De Gersem). When: first version January 2024; draft final version September 2025; final study
results September 2026

e Integrated power system / magnets optimization to minimize the total power requirements / cost and land occupation
(CERN, LNCMI). Evaluation of different powering concepts based on full wave and/or switched resonance.
e  Who: F. Boattini (CERN), J. Beard (LNCMI). When: first version mid 2024; updated version mid 2025; final study
results September 2026

e Cost and power estimate
e  Who: F. Boattini (CERN), M. Breschi (UNIBO), H. De Gersem (TUDa), L. Bottura (CERN), S. Fabbri (CERN), L.
Quettier (CEA). When: draft version June 2025; final version June 2027

e Testing of soft magnetic material at high frequency and high magnetic field. The study will help modelling the resistive
magnets
e Who: The team is under formation
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Task3.2: Superconducting magnets

e  Study suitable geometries and materials for fields in the hypothesis of magnetic fields in the range of 8...10T. Look at
impact on accelerator layout (e.g. limiting maximum to 8 T), aperture and winding options (e.g. rectangular vs. round
aperture). Basic 2D electromagnetic design

Who: L. Bottura (CERN), S. Fabbri (CERN), M.Breschi (UNIBO)

e  HTS option for fast pulsed dipoles. Scoping studies for dB/dt in the range of 300T/s and Bgap > 2T
Who: A. Kario, H. Ten Kate (TWENTE), FNAL cooperation
When: to be defined. Possibly for the next IMCC?




