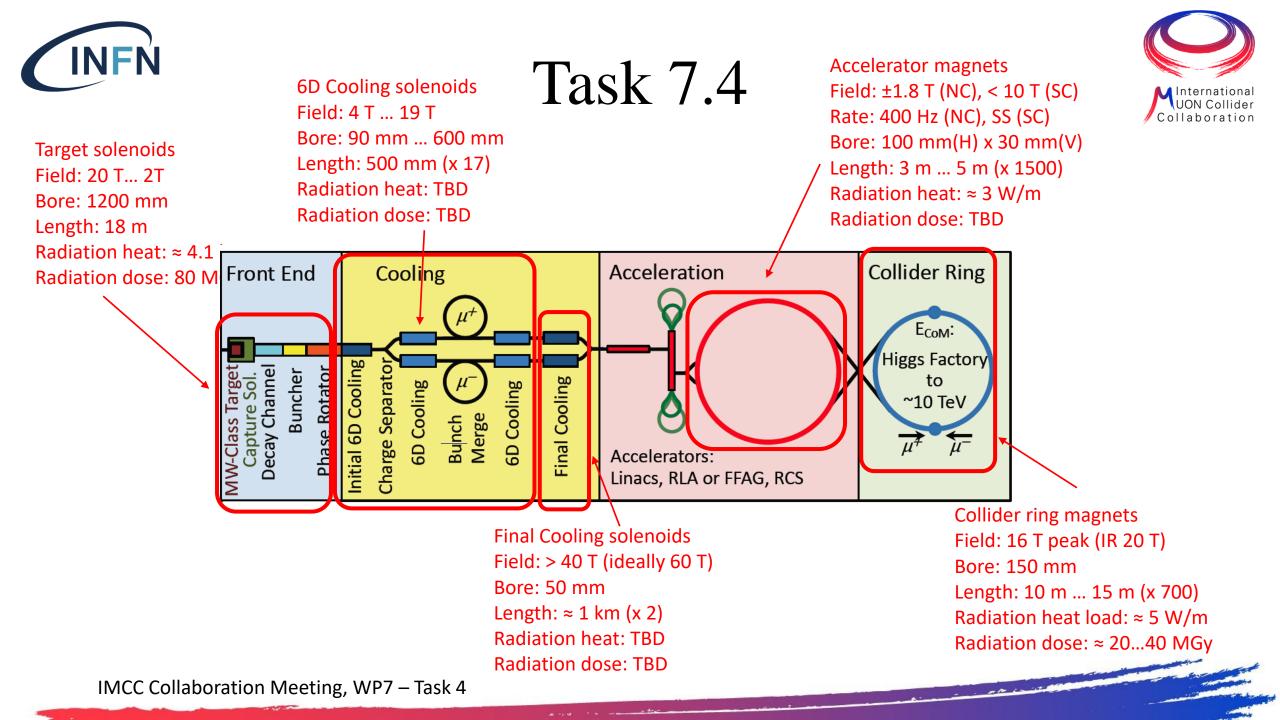


Technology Options for the Collider Magnets

<u>S.Mariotto^{1,2}</u>, A. Bersani³, B.Caiffi³, S. Farinon³, D. Novelli^{3,4}, T. Salmi⁵, L. Bottura⁶

IMCC Collaboration Meeting, Orsay 21 June2023

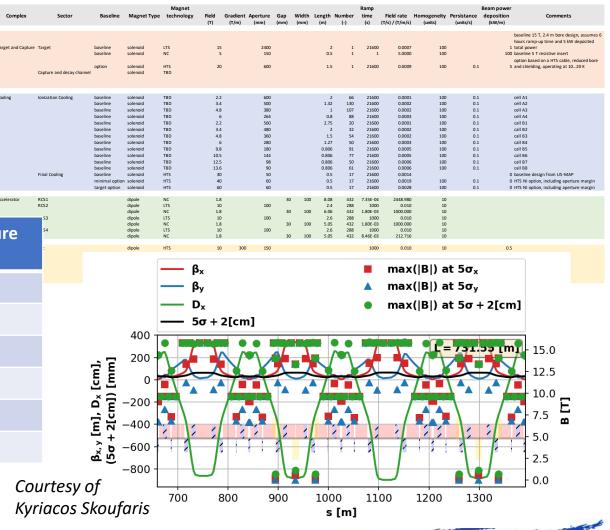

¹Università degli Studi di Milano, ²INFN – Milano LASA, ³INFN – Genova ⁴Università la Sapieza Roma, ⁵Tampere University, ⁶CERN

Outline

- Introduction
- Magnet requirements
- Technology options
- How to define technology limits
- Working plan
- Conclusion

Magnet Catalog

Luca Bottura


Courtesy of

Assumptions for magnets scaling:

- 16 T peak field CC/Arc
- 20 T peak field at Final Focusing
- Required flexibility of quadrupole/dipole ratio
- space between magnets: 300 mm

Location	Function	Technology	Dipole Field [T]	Quadrupole [T/m]	Aperture [mm]
ARC	Dipole	HTS	10	00	150
IR	Quadrupole	HTS		4 32	171.4
	Quadrupole	Нт		.93	212.2
	Quadrupole	ſS		300.71	266
	Quadrupole	5		191.41	417
	Quadrupole	HIJ		214.03	411.2

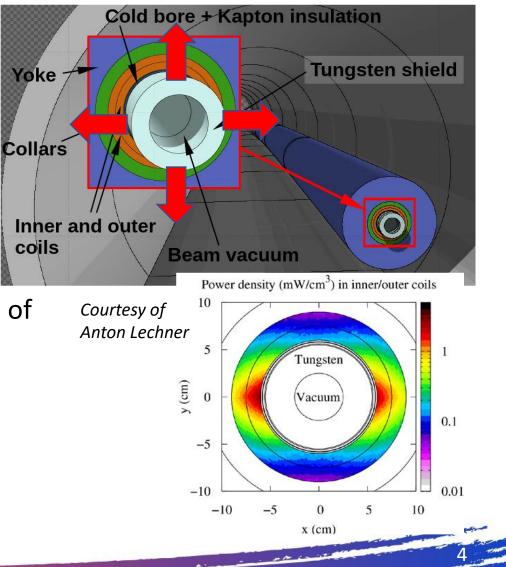
See "Beam dynamics requirements" K. Skoufaris, https://indico.cern.ch/event/1183573

Heat Load and Radiation

Input by other studies:

Calculations of the heat load on magnet coils

- Use of a W shielding (**2-4 cm** thick)
- Considered 3 TeV and 10 TeV config

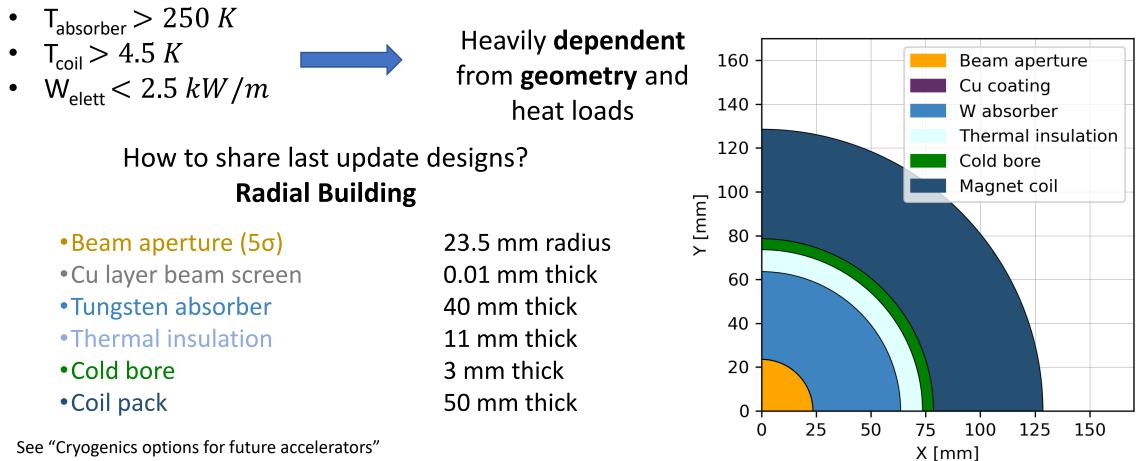

Results:

- Power penetrating shield: 5W/m
- **Cumulative dose** equals to 20-40 MGy in 10 years of operation
- DPA max 1.3E-4 after 10 years

Shield thickness \rightarrow 4 cm to limit cumulative dose

See "Shielding design and requirements"

A. Lachner, <u>https://indico.cern.ch/event/1183573</u>



Radial Building

Courtesy of Patricia Borges De Sousa

Cryogenic options calculated using same assumption of heat load calculations

See "Cryogenics options for future accelerators" Patricia Borges De Sousa, https://indico.cern.ch/event/1240043

Material Options

Techno	logy	Pro's	Con's
LTS (Nb	-Ti)	 Known and well developed technology (TRL 8) 	 Probably do not meet all magnet requirements
LTS (Nb ₃ Sn) Hybrid (LTS Nb ₃ Sn) + (HTS)		 Known technology, reaching demonstration level in accelerators (TRL 6/7) 	 Probably do not meet all magnet requirements Brittle/stress limited
		 Lower cost Exploit potential of both materials 	 Low readiness level for HTS insert (TRL 3/4) LTS/HTS joints and integration to be developed Temperature limited by LTS
All-SC (HTS)	Insulated Controlled Insulated	 Most compact solution Allows operation at high temperature Profit from on-going R&D activities on insulation (no insulation) 	 R&D at low readiness (TRL 3/4) Quench protection to be demonstrated Field delay and field stability in
	Non Insulated	insulation/no-insulation windings	 Field delay and field stability in case of NI winding

Design Options (1/2)

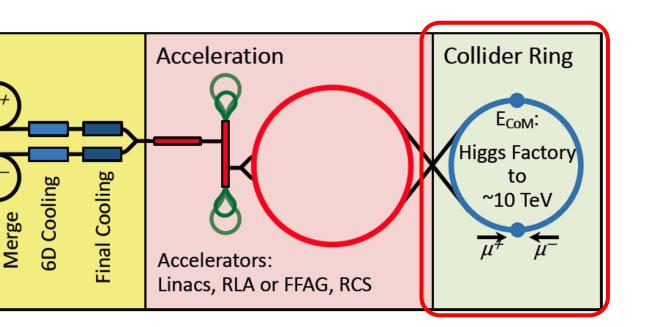
89 83	Technology	Pro's	Con's
	Cos-theta Design	 Well known design Wound around a cylindrical mandrel, end shape already suitable for beam tube insertion 	 Mechanical structure can be complex Not most easy winding geometry for HTS tapes
	Block Coil Design	 Known design principles Mechanical structure simplify stress management Easier geometry for HTS-tapes 	 Difficult stress management on coil ends Higher ratio conductor length/produced field
	Canted Cos- theta Design	 Intrinsic stress management Low number of parts and tools Easy winding procedure 	 Requires more cable than the other layouts Quench protection more difficult R&D needed

eting, WP7 – Task 4

CCT

INFŃ

Design Options (2/2)



A. Zlobin	Technology	Pro's	Con's
	NESTED Configuration	 Separate Powering Dipole/Quadrupole Inherit experience on Nb₃Sn magnets for HiLumi and LARP-US development program 	 High Stress on Internal Coil Alignment Higher Costs
T. Ogitsu	Asymmetric Coil Design	 Single type of coil Optimized margin and field quality 	 Fixed Dipole/Quadrupole ratio Stress on the supporting structure is not balanced

Working Group

INFN Milano

S. Mariotto, M. Statera, M. Prioli, E. De Matteis, R. Valente, S. Sorti

INFN Genova

B. Caiffi, A. Bersani, S. Farinon, D. Novelli

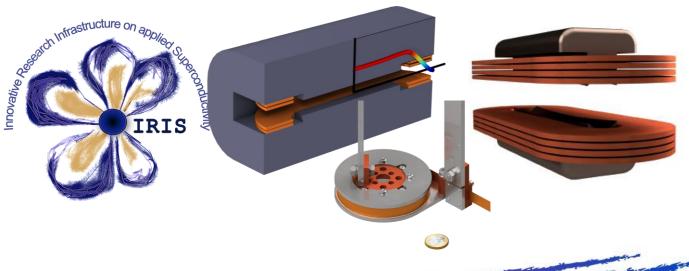
CERN

L. Bottura, A. Lechner

Tampere University T. Salmi

Synergies

Huge help and feedback will come from:


- 20T+ development program US
- CERN HFM

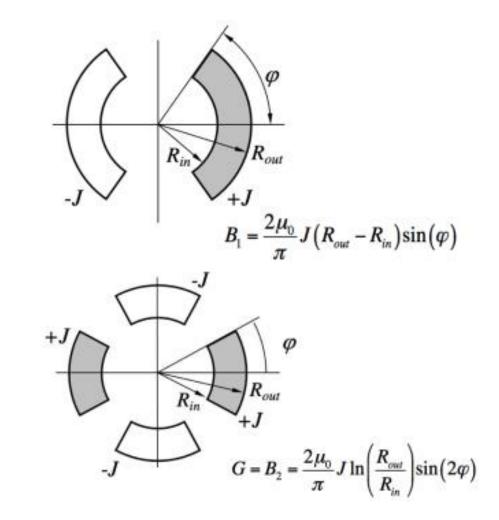
Possible feedback loop also inside INFN **PNRR-IRIS project** (see L. Balconi 20-05-2023) ans small HTS coil pancake program

- 10 T of dipolar field
- Bore dimensions 80x50 mm²
- Operating temperature 20 K
- Physical L < 1 m

Analytical Expressions

Presentation: "Collider magnets designs and limits" D. Novelli, IMCC Collaboration Meeting, 20-06-2023

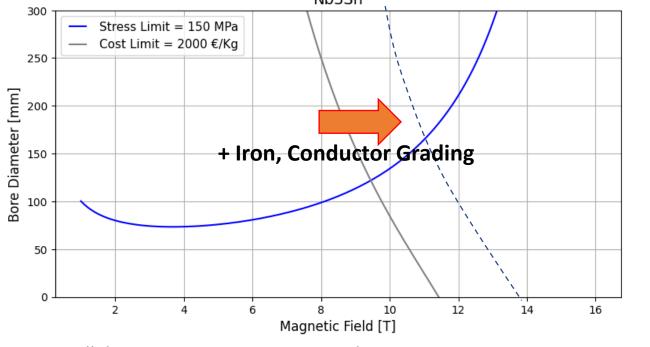
Use of analytical formulae for fast estimation of magnet scaling and limits


- Analysis of different materials:
 - NbTi (1.9 K)
 - Nb₃Sn (4.2 K)
 - HTS (*Re*BCO) (4.2 K and 20 K)
- Selection of scaling laws and fixed parameters
- Evaluation of peak field, forces, FQ...

(Aperture, BField) < LIMITS 2

1. Hot-Spot T_{MAX}

*σ*_{MAX}
 \$ Cost


Analytical Expressions

How we start? Fixed paramater values which link all magnet configurations

→ Fixed Enthalpy Margin

 $\begin{array}{ccc} \rho C_p & T_1 = T_{op} + \Delta T & \text{Sector Coil Approx} \\ \downarrow & \downarrow & \downarrow \\ \Delta H \xrightarrow{\downarrow} & \Delta T \xrightarrow{\downarrow} J_{eng} = f_{sc} J_{sc}(B, T_1) \rightarrow w \stackrel{\downarrow}{=} f(B, J_{eng}) \rightarrow \sigma_{MAX} = g(w, B, J_{eng}, r) \\ \\ \text{Nb3Sn} \end{array}$

PROBLEM:

Low $B \leftrightarrow \text{Very high } J_{eng}$ and viceversa

Quench Protection: Low field becomes IMPOSSIBLE High field becomes EASY

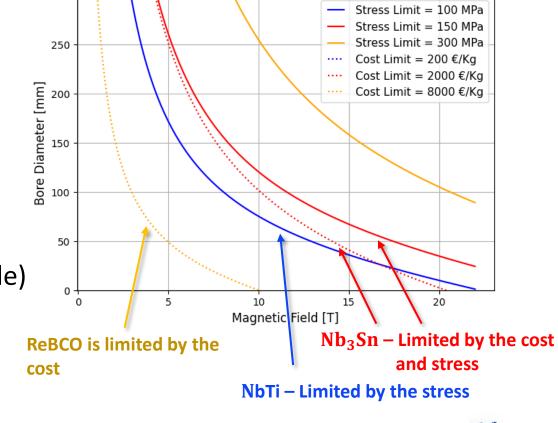
IMCC Collaboration Meeting, WP7 – Task 4

Analytical Expressions

300

What about fixing the maximum engeneering current density?

Sector Coil Approx

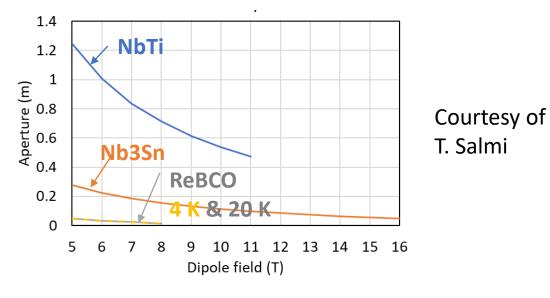

 $w = f(B, J_{eng}) \rightarrow \sigma_{MAX} \stackrel{*}{=} g(w, B, J_{eng}, r)$

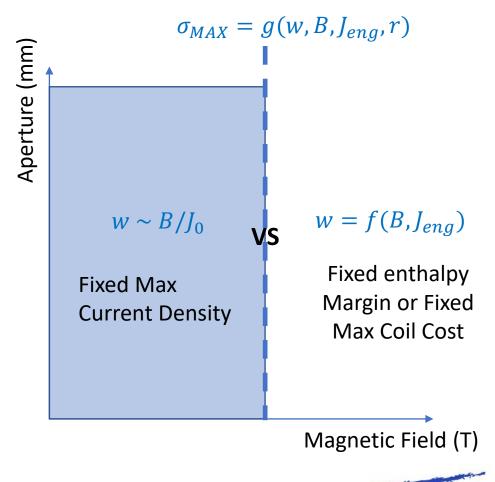
PROBLEM: Magnet are NOT OPTIMIZED

- High B values → Very Low Margin
 - NbTi (< 10T), Nb3Sn (< 12T), ReBCO @ LT (< 20 T)
- Low B values can be protected!!!!

Nb₃Sn and HTS best technologies

- Nb₃Sn limited by stress on the conductor (brittle)
- All-HTS solutions still limited by cost limits
 - ReBCO @ 20 K could work close to critical surface (high field and bore diameter)


J0 fixed at 450 A/mm^2


IMCC Collaboration Meeting, WP7 – Task 4

TO DO: Mixed approach using constant engeneering current density @ low B and maximum coil cost @ high B values

Observation:

- $\sigma_{MAX}(B, R)$ for a fixed enthalpy margin at high B field diverge because the coil $w \to \infty$
- Limited *w* only with the fixed max coil cost

Analytical Expressions

Project Plan (1/2)

Author: Siara Fabbri		Today:			15/6/2	2023		20)23			20	2024			20	025			2	2026			2027				
								gen 1	apr 1	lug 1	ott 1	gen 1	i apr 1	lug 1	ott 1													
TASK		OBJECTIVES (can be in Parallel)	COLLABOR# P	PROGRESS	: MONTHS	START	END	s	s	s	s	м	м	м	Ţ	w	T	т	w	-	w	w	Т	r	1	т	F	
	1	specifications and accelerator confiduration	INFN		continuous																							
		Collect first evaluation of the performance specifications required for the design (Physical Aperture, Dipole Field, Quadrupole Field,	INFN		12.0																							
	2	First version		80%	6.0	1-Jan-23	#######																					
		Draft final version		0%	3.0	1-Jul-23	#######																					
		Final version		0%	3.0	1-Oct-23	*****																					
		Decup analytic expressions for rast evaluation of magnet parameters (Main Component, Peak Field, Field Errors, Forces). Analytic study of relative	INFN		18.0																							
	3	First version		75%	6.0	1-Jan-23	*****														(Court	tesy	of				
		Draft final version		0%	6.0	1-Jul-23	#######															Siara		-				
		Final version		0%	6.0	1-Jan-24	*****																	<u> </u>				

First part of the Proposal:

- Summary of all magnet requirements
- Evaluation of analytical formulae to rapidly scale and evaluate D/Q and D/S config.
- Interaction with other workpackages and iterate

Project Plan (2/2)

Author: Siara Fabbri		Today:			15/6/2023			202			2024					20)25				2026			2027				
								gen 1	apr 1	lug 1	ott 1	gen 1	apr 1	lug 1	ott 1	gen 1	apr 1	lug 1	ott 1	ge 1	n k	apr li 1	јд 1	ott 1	gen 1	apr 1	lug 1	ott 1
TASK		OBJECTIVES (can be in Parallel)	COLLABOR# PI	ROGRESS	MONTHS	START	EMD		s			м	м	м		w			w			w	w					F
TASK 4 Collider Complex	4	Basic decision Basic decisions on: 1) Select the material of the conductor (Nb3Sn, HTS, Hybrid) for the ABC and IR magnets 2) Conductor configuration, margin and protection 3) Open midplane 4) Operating temperature Statements	INFN	0/.	24.0	Poarret	*****																		Cc Si	ourt ara	esy (Fabi	of bri
		Tentative version			18.0	1-Jan-23	1-Jun-24																					
		Final version			6.0	1-Jul-24	######																					
	5	Dipole magnet design - select layout of the coil (Block, CosTheta) for the ABC and IR magnets; 1) Select Nested/Asymmetric Coil for the ABC Magnets	INFN		30.0	1-Jan-25	######																					
	6	Milestone (M7.5): Report on high-field collider magnet design - by Nov. 312025				######	######																					
	7	Milestone (M7.8): Workshop on high-field collider magnets - by Nov. 12026				1-Nov-26	1-Nov-26																					
		Cost and power estimate	INEN		54.0																							
	8	First draft		0%	12.0	1-Jan-23	######																					
	°	Draft final version		0%	18.0	1-Jan-24	######																					
		Final version		0%	24.0	1-Jul-25	######																					

- Basic desicions on materials (HTS/LTS, Hybrid), layout, T_{op}, protection
- Main combined function ARC dipole design and limits for IR magnets (M7.5 Dec 2025)
- Estimation of costs and power (M7.7 Sep 2026)

- Several technological requirements for the collider magnet design identified have been used to produce a radial building method to share design updates
- Analysis of the performance of available superconductors:
 - Nb3SN and HTS (insulated, controlled insulated, non insulated), Hybrid
- 3 different design options are presently considered for the design study (costheta, block coil and canted)
- Requirements of **combined function magnets**: Nested vs Asymmetric Solutions
- Working plan divided in three main parts:
 - Development of **analytical formulae** to rapidly converge to final beam optic
 - Decision of **best promising design** to be fully analyzed and optimized
 - Production of conceptual design report focused on main combined arc magnets (most challenging)

Thank you for your attention