

MInternational UON Collider Collaboration

Muon Collider Magnet Technology Options Internal Review

Cooling

P. Borges de Sousa, M. Rhandi, T. Koettig, R. van Weelderen IMCC Annual Meeting 2023 19th to 22nd June 2023, Orsay, France

Cooling options – main drivers

Updated radial build for collider arc magnets

• Radial build has evolved to include a heat intercept between the absorber and the coil

Updated radial build for collider arc magnets

- Radial build has evolved to include a heat intercept between the absorber and the coil
- Baseline for heat load estimation/power consumption is **10 TeV machine**

Source: Informal meeting on muon collider absorber, vacuum and cryogenics integration (18 January 2023) · Indico (cern.ch)

•

Heat load deposited at cold mass level

w/ heat intercept

- Heat load estimated considering a heat intercept (between coil and absorber) and a thermal shield external to the cold mass at 80 K, and as a function of:
 - Coil temperature;
 - Absorber temperature;
 - Absorber thickness.
- Note: absorber is not considered to be part of the cold mass
- Heat load ~ independent of coil *T* (cooling effort heavily does, see next slide)
- Heat intercept cuts heat load by (thermal) radiation from the absorber to negligible values (total heat load doubles without it)
- Contribution from absorber supports considered disproportionate w.r.t. unavoidable beam-induced loads for $T_{abs} \ge 100 \text{ K}$

Target: Heat load to coil \leq 10 W/m

Shown: Heat load to coil in W/m, for heat intercept and thermal shield at 80 K, absorber thickness 4 cm, coil at 4.5 K

Power consumption at refrigerator I/F

w/ heat intercept

- Power consumption estimated for shown heat loads at various coil and absorber temperatures
- Different colours in the plots mean cooling effort at a different *T* level
- Not included: distribution losses, based purely on COP⁻¹ (see spares)

Considerations for coil cooling options

 Cooling mode (and temperature) will depend on the choice of conductor, which depends on the maturity level of the technology and on the timescale of construction

3 TeV machine

- Construction in ~15 years
- Magnetic fields within Nb₃Sn capabilities
- Nb₃Sn matured, usable
- <u>Cooling at 4.5 K 5.5 K using SC He</u>
- <u>Cooling at 4.5 K using He two-phase flow</u>

10 TeV machine

- Construction in ~25-30 years
- HTS preferred for sustainable collider
- Needs development
- <u>Cooling at 10 K 15 K or above</u>
- He or H₂ possible; in-depth study needed

Considerations for coil cooling options

Options at $T \le 5.5$ K (Nb₃Sn, 3 TeV machine)

Message: $T_{coil} \ge 4.5$ K, supercritical cooling looks promising

80

100

Considerations for coil cooling options

Options at $T \ge 10$ K (HTS, 10 TeV machine)

Evaluation of technology options for magnet cooling Collider Ring

Done:

- Critical contributors to total heat load deposited on the coil identified
- Absorber must operate at or above 250 K (overall cooling effort, distr. losses)
- Heat intercept between coil and absorber is a necessity
- Electrical power consumption of collider ring cryogenics estimated
- Coil must operate at or above 4.5 K
- Preliminary evaluation of possible cooling schemes, limitations

20.0

17.5

Heat load to coil in W/m 12.5 10.0 10.0 7.5 5.0

2.5

Evaluation of technology options for magnet cooling Collider Ring

Needs attention:

- Contribution from absorber supports considered disproportionate → effort should be put into the design of an optimized support for the MC absorber conditions
- Preliminary cross-section of the coil (and absorber) should be outlined to estimate max. cooling tube size, number, position → allows for some boundaries to cooling scheme layouts
- Cooling options for LTS (around 5 K) examined, promising → need R&D to explore the limits of two-phase flow and supercritical cooling in confined geometries
- Cooling options for HTS (if 10K+) need in-depth study → He gas cooling does not provide efficient heat transfer; H₂ cooling needs demonstration and change of mindset, safety assessment
- Cooling of absorber with CO₂/water needs in-depth review of the base assumptions, esp. risk-related
- Current leads: neither heat loads nor cooling options have been addressed

Thank you for your attention

Spare slides

Evaluation of technology options for magnet cooling Rest of the MC complex

Accelerator ring:

- Need to converge on a basic design for 3 TeV and/or 10 TeV to identify bottlenecks
- Special attention must be given to multiple cold-to-warm transitions, (very) short interconnect space
- Considerations on technology options investigated for collider ring, can be applicable to accelerator

6D cooling cell, target magnets:

• Specific magnets (interaction region magnets, target solenoid, cooling cell) need tailored, possibly less energy-optimized solutions – study to be carried out once preliminary specifications are fixed

Heat load deposited at cold mass level w/ heat intercept

- Heat load at cold mass level $f(T_{absorber}, T_{coil}, T_{thermal shield})$ shown for absorber thickness of **3 cm**, and considering outer thermal shield at 80 K
- With added heat intercept (shield) between the coil and the absorber

Reducing the absorber thickness from 4 cm to 3 cm doubles the beam-induced load that penetrates shielding (blue part) while only reducing the heat load via the supports (orange part, which is weight-dependent) by 30%

Power consumption at refrigerator I/F 3 cm absorber, w/ heat intercept

Beam aperture

Insulation space Heat intercent

150

Cu coating W absorber

Beam pipe Kapton ins

Clearance

Magnet coil

100

X [mm]

150

125

[[] ∑ 75

50

25

0+

50

Blue: electrical power required to provide cooling power at cold mass temp. level Orange: electrical power required to provide cooling power at absorber temp. level Red: electrical power required to provide cooling power at thermal shield temp. level

The larger the **blue** component \rightarrow the more difficult the coil design

N.B. I: the cost to extract heat at 300 K is nearly zero, reflecting the fact that the distribution effort (circulation) is **not yet included N.B. II:** although COP⁻¹ based on cryoplants using certain fluids, so far, we're talking only about temp. level, *i.e.*, no fluid-dependent costs considered (as distribution, special handling, etc...)

Power consumption at refrigerator I/F 4 cm absorber, baseline

Beam aperture

Insulation space Beam pipe

150

Cu coating W absorber

Kapton ins. Clearance

Magnet coil

100

X [mm]

150

125

[[]> 75 ·

50

25

0

50

Blue: electrical power required to provide cooling power at cold mass temp. level Orange: electrical power required to provide cooling power at absorber temp. level Red: electrical power required to provide cooling power at thermal shield temp. level

The larger the **blue** component \rightarrow the more difficult the coil design

N.B. I: For assumptions on calculation of cooling effort from heat loads, see spare slides

N.B. II: the cost to extract heat at 300 K is nearly zero, reflecting the fact that the distribution effort (circulation) is not yet included

N.B. III: although COP⁻¹ based on cryoplants using certain fluids, so far, we're talking only about temp. level, *i.e.*, no fluid-dependent costs considered (as distribution, special handling, etc...)

Calculations for a 3 TeV machine, abs. 3 cm

(Possible) solution for absorber supports from existing implementations

PUMA rolls

- Heat transfer measurements by J. Liberadzka-Porret at the Cryolab, EMDS # 2443998 (link)
 ≈ 1 W/roll under 500 N from RT to LN₂
 ≈ 0.1 W/roll under 500 N from LN to LN₂
 - ≈ 0.1 W/roll under 500 N from LN_2 to LHe

HL-LHC beam screen springs

- Heat transfer measurements at the Cryolab, EMDS # 2042522 (link)
 - ≈ 0.05 W/roll under 15 N from RT to LHe

Two- vs. single-phase flow local heat extraction Implications for magnet design

- Heat transfer coefficient α in **liquid He** is O(1) O(2) higher than options using high-speed, high-pressure gas/**supercritical fluid**
- If heat exchange area is limited, choice of cooling strategy needs to be adapted to provide the best possible heat transfer coefficient
- Magnet design should strive to incorporate, from the start, heat extraction pathways as close as possible to the coil and maximise heat transfer exchange area

Considerations:

Power consumption at refrigerator I/F From heat loads to power consumption

- For each temperature level of absorber, cold mass, and external thermal shield, the inverse coefficient of performance (COP⁻¹) at refrigerator interface was estimated to give a <u>semi-realistic</u> power consumption per meter of collider magnet.
- The heat load from each temp. level (slides 9/10) is multiplied by the COP⁻¹ to give a total electrical cost
- Distribution (e.g. pumps to circulate fluids) is not yet included in the "bill"

Temperature level	COP ⁻¹ in W _{elect} /W _{cool}	Source	
250 K	1	CO ₂ plant ATLAS ITk	
100 K	12	LN ₂ plant ATLAS	
80 K	16	LN ₂ plant ATLAS	
20 K	50	20 K/50 kW plot Frey (see spares)	
10 K	150	LHC cryoplant data	
4.5 K	240	LHC cryoplant data	
2.0 K	960	LHC cryoplant data	

(rough) estimation of distribution losses Absorber

Thus, where he are here a line or in the

- Calculations for the absorber circuit, 500 W/m
- Considered 2 and 4 pipes in absorber, each of i.d. = 20 mm (half of absorber thickness)
- Cell length (distance between jumpers to QRL) fixed at 25 m, sector fixed at 1000 m = 40 cells

Cooling pipes	5
beam aperture	

	Through QRL		Through absor	ber cooling pipes	
	<i>ṁ</i> per sector in kg/s	System pressure in bara	∆p per cell in bar (2 pipes)	∆p per cell in bar (4 pipes)	
N ₂ at 80 K (2P)	3.4	1.3	0.9	0.5	\rightarrow pressure drop too high (p _{out} < p _{atm})
N ₂ at 100 K (2P)	4.2	2.8	0.2	0.1	\rightarrow return of QRL dp (barely) within limits
CO ₂ at 230 K (2P)	2.0	8.9	4.4	2.2	→ pressure drop too high, CO ₂ solidifies issue for return of QRL (high dp)
CO ₂ at 250 K (2P)	2.3	17.9	2.2	1.1	\rightarrow return of QRL dp within limits
H ₂ O at 300 K (SP)	24.0	3	0.2	0.05	

Proposed work program

- Currently no work program specifically defined for cryo developments
- However, a few items have been identified as being of interest:
 - Use of extrapolated flow pattern maps (from CO₂) needs to be validated for two-phase flow in He and H₂
 - Explore the limits of heat transfer and pressure drop for sc He cooling
 - Investigation into cryoplant capabilities, deliverable \dot{m} and $\dot{Q}_{cooling}$
 - Assessment if H₂ cooling is feasible, implications on safety
 - Design of optimized supports and heat intercept for absorber

- Two-phase flow at 250 K, 20 bara, expanded from 70 bara, 260 K
- Depending how we enter the two-phase region, cooling at "tunnel" or room temperature would be sufficient
- Other cooling schemes possible, to be investigated

Pressure (bar)

Carbon Dioxide

Enthalpy (kJ/kg)

25

 Supply subcooled liquid at 4 bara, 22.5 K, expand to 1.3 bara into the two-phase region, two-phase cooling at 21.2 K

Enthalpy (kJ/kg)

Helium

 Expand from 3 to 1.3 bara into the two-phase region, two-phase cooling at 4.5 K (red)

Pressure (bar)

 Use supercritical region allowing a certain temperature gradient (shown 4.5 K to 5.5 K) (blue)

Enthalpy (kJ/kg)

27