

10 TeV com Collider Ring Parameters and Requirements

Muon Collider annual meeting, 20th June 2023

- Luminosity
- Nominal 10 TeV com Collider Parameters
- Consequences on Collider Lattice
- Neutrino Radiation Issue
- Muon Decays causing Radiation and Heat Load
- Options to simplify by changing main Parameters?
- Summary

C. Carli

Luminosity

• Luminosity per IP given by: $L = \frac{f_r N^2}{8\pi \, \varepsilon_{ph} \beta^*} f_{hg} \, \frac{\gamma \, T_{\mu}}{T_{rev}}$

for round muon beams and one bunch per beam and with

- f_r the complex repetition rate, N the number of muons in bunch
- $\varepsilon_{ph} = \varepsilon_n / \gamma$ the physical rms emittance with $\varepsilon_n = 25 \ \mu m$ the normalized rms emittance and γ the relativistic Lorentz factor
- β^* the Twiss betatron function at the IP, σ_z the rms bunch length
- $T_{\mu} \approx 2.2 \ \mu s$ the muon life-time at rest, T_{rev} the revolution time
- f_{hg} the "hourglass" luminosity reduction factor a function of σ_z/β^* (for short bunches $f_{hg}(\sigma_z \ll \beta^*) \approx 1$)
- Assumptions
 - Bunch length $\sigma_z = \varepsilon_L / (\gamma \sigma_\delta)$ expressed by geometric longitudinal rms emittance ε_L and rms relative momentum spread
 - $\beta^* = \sigma_z$ giving moderate luminosity loss due to hourglass effect $f_{hg} = 0.758$
 - Revolution time $T_{rev} = 2\pi \frac{\gamma E_{\mu}}{e c^2 \overline{B}}$ with $E_{\mu} = 105.658$ MeV the muon rest energy and \overline{B} the average bending field

→ gives luminosity per IP
$$L = \frac{e c^2 T_{\mu}}{16 \pi^2 E_{\mu}} \frac{f_r N^2 \gamma^2 \sigma_{\delta} \overline{B} f_{hg}}{\varepsilon_n \varepsilon_L}$$

Large (average bending) magnetic field helps

- Large longitudinal acceptance to operate with large rms momentum spread σ_{δ} => corresponds to small $\beta^* = \sigma_z$ - both a challenge for lattice design
- Consequence of assumption and optimizations made:
 - ♦ Bunch length σ_z and β^* decrease with energy
 - o Divergence at IP independent of energy!
 - Lattice design becomes more difficult for higher energies (higher beam rigidity, longer innertriolet, more chromatic effects ...)

Nominal 10 TeV com Collider Parameters

Parameter	Symbol	Value
Beam energy	Ε	5000 GeV
Relativistic Lorentz factor	γ	47 322
Circumference	С	≈ 10 000 m
Magnetic (average bending) field	\overline{B}	≈ 10.48 T
Repetition rate	f_r	5 Hz
Bunch intensity (one bunch per beam)	N_{μ}	$1.8 \cdot 10^{12}$
Beam power per beam	P_B	7.2 MW
Normalized transverse rms emittance	ε_n	25 µm
Physical transverse rms emittance	$arepsilon_{ph}$	0.528 nm
Long. geometric rms emittance $\gamma \sigma_z \sigma_\delta$	\mathcal{E}_L	70 mm
Rms relative momentum spread	$\sigma_{\delta} = \sigma_p / p$	$1 \cdot 10^{-3}$
Rms bunch length	σ_{z}	1.5 mm
Twiss betatron function at the IP	eta^*	1.5 mm
Rms beam size at IP	$\sigma_{\perp,IP}$	0.89 μm
Luminosity	L	$19.5 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Beam-beam tune shift per IP		0.078

10TeV Muon Collider - Extended Final Focusing Schemes

- Strong quadrupoles at locations with large Twiss betas and large momentum spread
 - Strong chromatic aberrations from IP to be corrected by local compensation
 - Sensitivity to unwanted mutipolar components and
 - □ Short beam life-time helps for slow diffusion driven by high orders
 - Sections with large beam sizes and, thus, apertures

Neutrino Radiation Issue

Muons decay (say in

 Radiation due to neutrino beam reaching the earth surface

- Narrow radiation "cone" for a short piece of the machine
- Very small interaction cross sections
 - Earth does not act as shielding (very small cross sections)
 - Showers from neutrinos interacting close to earth surface generate dose seen at surface
- Strong increase of maximum dose with muon energy
 - Cross sections about proportional to energy
 - Typical energy per interaction of neutrino with matter proportional to muon energy
 - Opening of radiation cone inversely proportional to muon energy

some straight section)

(rotating with muon beam)

Neutrino Radiation Issue

Without mitigation measures gives

$$\frac{dH}{dt} = (1.104 \cdot 10^{-28} \text{ Gy m}^2) w_{R,eff} \frac{4\gamma^4 f_r N_\mu}{\pi L_s^2 C} \int ds \, \frac{1/(6\gamma^2)}{\sigma_{\vartheta_H} \cdot \sigma_{\vartheta_V}} \exp\left[-\frac{\left(\vartheta_H - \hat{\vartheta}(s)\right)^2}{2\sigma_{\vartheta_H}^2} - \frac{\vartheta_V^2}{2\sigma_{\vartheta_V}^2}\right]$$

- "Source term" from analytical estimates and fit to FLUKA results by G. Lerner et al.
 Effective weighting factor w_{R,eff} = 1.3 Sv/Gy
- Integral w.r.t. longitudinal position s in ring and taking details of lattice into account

$$\sigma_{\vartheta_H}^2 = \frac{1}{6\gamma^2} + \varepsilon_{ph}\gamma_H(s) + (\sigma_\delta^2 \cdot D'(s))^2$$

$$\sigma_{\vartheta_V}^2 = \frac{1}{6\gamma^2} + \varepsilon_{ph}\gamma_V(s)$$

with γ_H and γ_V the Twiss γ function in the horizontal and vertical plane and D'(s) the derivative of the dispersion

Neutrino Radiation Issue

- Integrals evaluated for present (work in progress by K. Skoufaris) 10 TeV collider arc half cell
 - In collider mid-plane as function of \mathcal{J}_{H} (i.e., $\mathcal{J}_{V} = 0$) for one year (5000 h operation)

Peaks from 30 cm straight sections
=> Some lower due to beam divergence (D' or betatron motion)
Longer regions with higher radiation from quadrupoles and X-poles
=> Lower dipolar magnetic field

Neutrino Radiation Issue Mitigation by "Wobbling"

- Wobbling of machine in vertical direction part of MAP proposal
 - High precision movement system for time-dependent mechanical deformation of ring around arc (including chromatic compensation, matching section and FMC arc cells
 - Vertical slope modulation within $\pm 1 \text{ mrad}$ reduce peak dose by factor ~100
- For 10 TeV com collider with 10 km circumference and say 3.6 km arcs

Vertical bend ±16.7 Tm

- Combination of pieces of parabola two pieces with opposite curvature one period
- Initial proposal
 - Say 8 periods ~600 m long periods leading to vertical position excursions ±150 mm
 - Horizontal magnetic field (average) of ±0.11 T needed for vertical deflections (in addition and independent from main bending and multipolar fields!!)
- Proposal for reduced vertical position excursions
 - More periods about 100 m long leading to vertical position excursions ±25 mm
 - Horizontal magnetic field (average) of ±0.67 T needed for vertical deflections

Muon Decay causing radiation and heat load

- Almost all (assuming no dumping of "residual intensity") injected muons decay
- Electrons and positron generate shower
 - W absorber to intercept most of shower (~500 W/m with nominal C and average field)

- Residual power "leaking" into cold mass
 - Cryo load, radiation damage etc. "under control" with 30 mm to 40 mm
- Thickness 40 mm assumed in recent discussion Impact of muons lost on apertures?
- May localized (at acceptance limitation) losses generate significant additional cryogenic load?

Conclusion of Cryogenic System Study

- Warm W absorber (otherwise excessive power for refrigerator)
- Thermal shield at ~80 K between absorber and cold bore (otherwise excessive heat load by thermal radiation to cold bore)
- Heat loads to cold mass due to beam and conduction through supports similar
- Cold mass at 2 K leads to excessive power for refrigerator
 => Choice of cold mass temperature and conductor(s) to be discussed

 Many more details (cooling fluid options, 30 mm absorber ...) studied and in presentation by Patricia

Considerations on main collider parameters Any option to reduce challenge and improve?

- Lower magnetic fields
 - Immediate impact on luminosity
 - Larger circumference, reduced beam induced heat load normalized to length
 - Even more difficult to design optics (β^* and chromatic correction ..)
- Change of time structure
 - Lower repetition rate and larger intensity (unchanged beam power)
 - □ Limitation all along the chain (drive beam, cooling, acceleration, beam-beam ..)
 - (ruling out larger emittances would not result in luminosity increase)
- Apertures
 - Limited margin to reduce aperture in FF (less than 5 rms beam sizes for beam?)
 - May-be beam size reduction in CC and matching sections (larger than in arc, for which discussions concentrated so far)?
 - Little margin to reduce aperture in arc dominated by W absorber
- Smaller emittances
 - Present emittances a challenge for cooling no blow-up along accelerator chain
 - Beam-beam effect to be watched with smaller transverse emittances
 - Smaller longitudinal emittances would help if used to reduce momentum spread
- Asymmetric colliding beams
 - Natural to have round beams with equal emittances in both planes

Summary

- Collider design challenging
 - Optics for small β^* with large beam rigidity and momentum spread chromatic effects
 - Energy deposition and radiation from muon decay products
 - Radiation due to neutrinos reaching Earth's surface
 - "Wobbling" scheme challenging mechanical system, impact optics design
 - Beam induced background to experiment
- Some impact on hardware
 - High field, large aperture magnets, most of the them combined function (e.g., horizontal bending, quadrupolar component and small vertical bending for "wobbling")
 - Stringent field quality requirements for some magnets conflicting with feasibility
 - Short straight sections between magnets Feasible field versus position profiles?
 - Tunsten absorber inside magnet aperture
 - Cryogenic system has to and can cope with heat load
 - Conclusion to be drawn from study (cold mass temperature, which superconductor, cooling fluid)?
 - Precise (how?) mechanical magnet movement system for wobbling .. feasibiliy?
- Little margin to change parameters keeping nominal luminosity
 - E.g., reduction of magnetic field immediately impacts luminosity
 - Finalize collider lattice design for present nominal parameters and discuss feasibility and required changes