

How good a magnet can be?

J. L. Rudeiros Fernández

Contributions from: P. Ferracin, S. Prestemon, G. Sabbi, X. Wang

IMCC 2023

Table of contents

01

Introduction

02 Magnetic Field

Quality

03

Magnetic Field Strength

04

Conclusions

How good a magnet can be? | BERKELEY LAB

1. Introduction How good a magnet can be?

What are the magnets that we will discuss?

Boscolo, M., Delahaye, J.P. and Palmer, M., 2019. The future prospects of muon colliders and neutrino factories. *Reviews of Accelerator Science and Technology*, *10*(01), pp.189-214

Arc and IR magnet challenges

- Large bore (~ 150mm)
- High field (~ $10 \rightarrow 20T$)
- Large stress in the conductor due to e.m. forces (~ 300...400MPa) if not intercepted (need for stress-management concepts)

1. Introduction How good a magnet can be?

What do we mean by "good"?

- Magnetic field strength:
 - The magnitude of the generated magnetic field
- Magnetic field quality/uniformity:
 - How close is the real magnetic field to the design/intended values

• Others:

 Cost-effectiveness, *training*, efficiency, operational margin, time dependency, degradation, repeatability, physical configuration, operational temperature, winding, weight, size...

Superconducting materials

Nb-Ti Small filaments, ductile and cheap Nb₃Sn Strain sensitive and brittle, reaction at ~650 °C, larger filaments

Bi2212

Round strand -> cable, reaction at ~900 °C in O_2 at 50 bar, strain sensitive

REBCO

Tape, no reaction, resistance to stress, strong angle dependence of J_c (much higher with B_⊥ than with B_⊥)

Superconducting critical surfaces

How good a magnet can be? | BERKELEY LAB

J. L. Rudeiros Fernandez et al. 6

Superconducting cable architectures for superconducting magnets

Multi-wire Rutherford cable

Used for Nb-Ti, Nb₃Sn, and Bi2212

In theory, similar designs, independently of strand material

Tape based architecture On-going R&D for **REBCO** tapes

Superconducting cable architectures for superconducting magnets - **REBCO** based

MIT twisted stacked-tape cable (TSTC)

- Concept: Simple and straightforward
- Compact \rightarrow High engineering current density
- Partial transposition
- Behavior of a tape
 - Bending in certain directions
 - Anisotropic field dependence

Takayasu et al., 2011. SuST 25 (1): 014011

REBCO Roebel cable

- A design by Ludwig Roebel for low loss copper cables in 1914
- Compact \rightarrow high engineering current density
- Full transposition along cable direction
- Punch away conductors
- Behavior of a tape
 - Bending in certain directions
 - Anisotropy

Goldacker et al., 2014. SuST 27 (9): 093001 Barth. 2013. High Temperature Superconductor Cable Concepts for Fusion Magnets.

Superconducting cable architectures for superconducting magnets - REBCO based

Round wire #1: conductor on round core (CORC®)

vanced Conductor Technologies LLC

- Macroscopic round conductor → isotropic in bending direction and magnetics
- Partial transposition
 - ~ 30 tapes, 30 micron thick substrate, 3.8 mm diameter,10kA transport current at 4.2 K, selffield
- Lower J_{e} compared to rectangular cable due to the additional former
- Tape degradation due to bending

Round wire #2: Symmetric Tape Round (**STAR**[™]) wire

http://www.ampeers-llc.com/

- Similar to CORC
- But with few (< 10) and highly customized REBCO tapes
 - Higher flexibility: bending radius < 15 mm
 - Smaller diameter: 1.4 2 mm \rightarrow higher J_{e}
- Generally carry less current than CORC
- Interesting candidate for cabling

Kar et al., 2020. <u>SuST</u> 33 (9): 094001

Weiss et al., 2020. <u>SuST</u> 33 (4): 044001

How good a magnet can be? | BERKELEY LAB

Table of contents

01

Introduction

	\mathbf{O}
U	2

Magnetic Field Quality 03

Magnetic Field Strength

04

Conclusions

2. Magnetic Field Quality - Introduction

Mathematical definition of field quality for accelerator magnets

$$\mathbf{B}(z) = \sum_{n=1}^{\infty} C_n \left(\frac{z}{R_{ref}}\right)^{n-1} \quad \text{with} \quad z \in D$$

Definition of **units** $c_n = b_n + ia_n = 10^4 \frac{C_n}{B_m}$

 B_1

$$D$$

 B_2

Geometric field errors – Challenges for specific superconductor material

Nb-Ti Low stiffness coil in	Nb ₃ Sn	Bi2212	REBCO
relation to Nb ₃ Sn impregnated coils	Strain sensitive and brittle, reaction to	Reaction at ~900 °C in O ₂ at 50 bar	
	~050 °C	Due to higher	
	During the reaction cycle, Nb ₃ Sn phase expands in volume. Due to its brittle nature,	temperatures, the structural elements of the coil might be geometrically distorted.	
	additional space is needed to limit strain.		
	Coils are normally resin	impregnated. The geometr control precisely.	ical size is very challenging to

NbTi, $B_{p} = 8.6 T$ How good a magnet can be? | BERKELEY LAB

LHC MB

Geometric field errors – Arc dipoles – collared structures

Bellesia, B., Todesco, E. and Santoni, C., 2006. Random errors in superconducting dipoles

The block positioning accuracy is worst than in NbTi LHC dipole (~ x2)

Fiscarelli, L. et al.., 2016. Magnetic measurements and analysis of the first 11-T Nb 3 Sn dipole models developed at CERN for HL-LHC. *IEEE Transactions on Applied Superconductivity*, *26*(4), pp.1-5.

Fiscarelli, L., et al., 2016. Magnetic measurements and analysis of the first 11-T Nb3Sn 2-in-1 model for HL-LHC. *IEEE Transactions on Applied Superconductivity*, 27(4), pp.1-4.

J. L. Rudeiros Fernandez et al. 14

Geometric field errors – IR quadrupoles

Bellesia, B., Koutchouk, J.P. and Todesco, E., 2007. Field quality in low-β superconducting quadrupoles and impact on the beam dynamics for the Large Hadron Collider upgrade. *Physical Review Special Topics-Accelerators and Beams*, *10*(6), p.062401.

Cheng, D.W., Ambrosio, G., Ferracin, P., Fajardo, L.G., Prestemon, S.O., Ray, K.L., Sabbi, G.L., Solis, M., Vallone, G. and Wang, X.R., 2023. The challenges and solutions of meeting the assembly specifications for the 4.5 m long MQXFA magnets for the Hi-Luminosity LHC. *IEEE Transactions on Applied Superconductivity*.

Todesco, E., Bermudez, S.I., Foussat, A., Gautheron, E., Kirby, G., Felice, H., Perez, J.C., Fleiter, J., Barth, C., Milanese, A. and Prin, H., 2023. Status and challenges of the interaction region magnets for HL-LHC. *IEEE Transactions on Applied Superconductivity*.

How good a magnet can be? | BERKELEY LAB

Magnetization effects (persistent currents) – NbTi and Nb₃Sn

Bellesia, B., Bottura, L., Granata, V., Le Naour, S., Oberli, L., Sanfilippo, S., Santoni, C., Scandale, W., Schwerg, N., Todesco, E. and Vollinger, C., 2005. Trends in cable magnetization and persistent currents during the production of the main dipoles of the Large Hadron Collider. *IEEE transactions on applied superconductivity*, *15*(2), pp.1213-1216.

Bermudez, S.I., Bottura, L. and Todesco, E., 2016. Persistent-current magnetization effects in high-field superconducting accelerator magnets. *IEEE Transactions on Applied Superconductivity*, 26(4), pp.1-5.

Larger magnetization in Nb3Sn due to coalescing of filaments within sub-element, effective filament size ~45-50 micron in RRP 108/127 at 0.7 mm diameter. However, this can be mitigated with coil design and precycle optimization.

Magnetization effects (inter-strand coupling currents) – NbTi and Nb₃Sn

Aleksa, M., Amet, S., Ang, Z., Bottura, L., Buzio, M., Ferracin, P., Pagano, O., Remondino, V., Russenschuck, S., Sanfilippo, S. and Scandale, W., 2002. Measurement and analysis of the field quality of LHC prototype and preseries superconducting dipoles. IEEE transactions on applied superconductivity, 12(1), pp.247-250.

It is possible to reach an interstrand resistance of 20-40 μΩ (acceptable 15-150 μΩ)

RUTHERFORD CABLES FOR HQ01e AND HQ02a

Parameter	Unit	HQ01e	HQ02a
Strand number	-	3	5
Core material	-	-	SS316L
Nominal strand diameter	mm	0.80	0.778
Cable pitch length	mm	102	95
Bare cable width	mm	15.15	14.77
Bare cable mid thickness	mm	1.437	1.376
Keystone angle	deg.	0.75	0.73
Twist pitch	mm	14:	±2

COMPARISON OF THE DYNAMIC HARMONICS AT 13 A/s, 14 kA (UNIT AT $R_{\rm ref} = 40$ mm). η Is the Compensation Factor

Harmonics	HQ01e	HQ02a	η
b_2	14.60	0.85	0.94
b_3	1.56	-0.12	1.08
b_4	0.43	0.04	0.90
b_5	0.21	-0.00	1.02
b_6	2.09	0.10	0.95
a_3	4.73	0.44	0.91
a_4	0.18	-0.14	1.75
a_5	0.52	0.12	0.77
a_6	-0.26	-0.04	0.84

Wang, X., Ambrosio, G., Borgnolutti, F., Buehler, M., Chlachidze, G., Dietderich, D.R., DiMarco, J., Felice, H., Ferracin, P., Ghosh, A. and Godeke, A., 2013. Multipoles Induced by Inter-Strand Coupling Currents in LARP Nb3Sn Quadrupoles. IEEE transactions on applied superconductivity, 24(3), pp.1-7.

Rossi, L., 2003. The LHC main dipoles and quadrupoles toward series production. IEEE transactions on applied superconductivity, 13(2), pp 1221-1228 How good a magnet can be? | BERKELEY LAB

Magnetization effects in REBCO-based magnets - Roebel examples

Durante et al. 2018. *IEEE <u>TAS</u>* 28 (3): 4203805

How good a magnet can be? | BERKELEY LAB

Feather-M2.1-2 REBCO Dipole Magnet

Bortot et al. 2020. <u>SuST</u>

Magnetization effects in REBCO-based magnets - CORC example

0.75

C2 CORC CCT dipole magnet

Wang et al., 2020. <u>SuST</u>. How good a magnet can be? | BERKELEY LAB

Position along the magnet longitudinal axis (mm)

Negligible ramp-rate dependence of the dipole transfer function and normal sextupole (b3) measured between 0.3 and 4.1 kA at 4.2 K

Measured and calculated normal sextupole (b3) along the magnet at 280 K with a current of 5 A (black triangle), 77 K with 200 A (blue circle) and 4.2 K with 4 kA (red square).

J. L. Rudeiros Fernandez et al. 19

Magnetization effects in REBCO-based magnets – A path to reduced magnetization

Smaller size of superconductor can reduce magnetization \rightarrow striation in REBCO tapes

Yanagisawa et al., 2015. *IEEE <u>TAS</u>* 25 (3): 6603705. Amemiya et al., 2018. <u>*SuST*</u> 31 (2): 025007. Kesgin et al., 2013. <u>*APL*</u> 103 (25): 252603. Vojenčiak et al., 2015. <u>*SuST*</u> 28 (10): 104006.

Table of contents

01

Introduction

02

Magnetic Field Quality

04

Conclusions

Path towards very high field accelerator magnets

Key factors in the design of future very high-field (>16 T) and large aperture (>100 mm) superconducting magnets:

- Ability to deal with high Lorentz forces and resulting strain-stress in the strain-sensitive conductor (i.e. **stress management structures**).
- Efficient use of the conductor to create a certain magnetic field (i.e. required length of conductor for an equivalent integrated field along the beam path). In terms of efficiency, the ability to implement "grading" is also crucial (cost).
- Effective use of HTS superconductors (i.e. magnet designs that could leverage all the potential of HTS superconductors without subjecting it to degradation due to required geometrical or manufacturing conditions).
- Easiness, scalability, and cost-effective manufacturing of the coil and magnet.

Path towards very high field accelerator magnets

- 2005, <u>P. McIntyre</u>, et al., 24 T hybrid for LHC tripler (TAMU)
 - 2011, 2014, E. Todesco, et al., 20 T hybrid for LHC upgrade (CERN)
 - 2015, G. Sabbi, et al., 20 T hybrid for SPPC China and FCC (LBNL)
 - 2015, R. Gupta, et al., 20 T hybrid for LHC upgrade (BNL)
 - 2016, Q. Xu, et al., 20 T hybrid for SPPC China (IHEP)
 - 2018, <u>J. van Nugteren</u>, et al., 20+ T HTS for LHC upgrade or FCC (CERN)
 - 2020, <u>D. Martins Araujo</u>, et al., towards 20 T FRESCA2+Feather (CERN)
 - 2021, <u>J.S. Rogers</u>, *et al.*, **18** T hybrid (TAMU)
 - 2022, P. Ferracin, et al., 20 T hybrid demonstrator (US MDP)

Path towards very high field accelerator magnets

Context – US Magnet Development Program

Weiss, Jeremy D., et al. "Introduction of CORC® wires: highly flexible, round high-temperature superconducting wires for magnet and power transmission applications." Superconductor science and technology 30.1 (2016): 014002. How good a magnet can be? | BERKELEY LAB

Context – US Magnet Development Program

X. Wang (LBNL)

V. Kashikhin (Fermilab)

Table of contents

01

Introduction

02 Magnetic Field Quality

03

Magnetic Field Strength

Conclusions

4. Conclusions

- Field quality
 - Nb₃Sn represents the immediate future for collider magnets up to 16 T. The field quality requirements in accelerator magnets are reachable with this technology:
 - When looking at the Nb₃Sn-based dipoles and quadrupoles produced for the HL-LHC, the accuracy of the positioning of the conductor (i.e. ~ 50 μ m) is a factor two higher than LHC NbTi-based magnets (i.e. ~ 25 μ m).
 - The size of the filaments in Nb₃Sn conductor is ~ 50 μm (i.e. 10 times higher than LHC NbTi conductor) leading to higher magnetization effects (e.g. field error, losses).
 - HTS conductor represents the path for very high field magnets beyond 16 T:
 - REBCO-based magnets: significant R&D in the conductor and cable architecture is still necessary to mitigate the effects of the large magnetization on field errors and losses.
- Field strength
 - When aiming at very high-field (>16 T) and large aperture (>100 mm) superconducting magnets:
 - HTS conductor with good level of J_e is available but extensive R&D is required in relation to cables and coil fabrication in order to avoid current limitations (e.g. minimum bending radius of CORC).
 - Stress management concepts are necessary to deal with the very high e.m. forces.

Thanks