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Parameter Optimisation
 “Top down” optimisation of the low energy complex

 Look at performance of the muon collider as a function of 
“low energy complex” parameters

 Proton beam parameters
 Target capability
 Muon cooling system performance

 For this first pass, take luminosity as the figure of merit
 To avoid controversy, I have taken arbitrary normalisation 

factor
 Nb: first pass – model improvements are welcome (and 

needed)
 Other FoMs may be important

 Energy spread at the detector
 Capital & operating costs
 Environmental considerations

 Developing better model for muon collider performance
 Take this all with a “pinch of salt”
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Facility Model
 Facility model is naive python script

 Assume some proton beam power and rep rate (i.e. charge 
per proton pulse)

 Use Soler et al to get proton → muon production yield
 Normalised to HARP data
 Other calculations exist, similar to O(factor 2)

 Cooling performance from papers by Stratakis & Sayed
 With some bespoke hacking which I will describe

 High energy complex
 Assume acceleration average 4 MV/m over the whole complex

 Gives muon survival
 Assume negligible emittance growth
 Assume 10 km circumference collider ring (at 5 TeV)
 Assume β* is 1.5 mm constant

 Really this depends on longitudinal and transverse emittance
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Facility Model (2)
 Relevant proton baseline parameters:

 Proton energy 5 GeV
 Beam power 2.0 MW
 Rep Rate 5 Hz
 Proton bunch length 2 ns

 Luminosity L = N1N2/4πσx
2
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Proton energy (1)
 How sensitive is Muon collider to proton energy?

 Use data from Soler et al to get muon → proton conversion 
rate vs energy

 Normalised i.e. number of muons/proton/GeV
 Note: no data for mu+ vs mu- and carbon and solenoid

[Soler et al]
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Proton energy - carbon

 How sensitive is Muon collider to proton energy?
 Red curves are contours
 Assumes carbon target

baseline
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Proton energy - tantalum

 How sensitive is Muon collider to proton energy?
 Red curves are contours
 Assumes tantalum target

baseline
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Proton energy best
 Consider “luminosity”

baseline
 How sensitive is Muon collider to proton energy?

 Assumes carbon at low energy
 Assumes heavy metal target at high energy
 Red curves are contours
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Proton bunch length (1)
 Consider proton bunch length

 Sayed and Berg looked at yield for different magnetic tapers 
and proton bunch length

 MAP baseline ~ taper length = 20 metres
 How does the proton bunch length affect yield?

[Sayed and Berg]
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Proton bunch length (2)
 Muon yield is soft function of proton bunch length

 Shorter bunch may be harder to achieve than slight uplift in 
muon beam power
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Proton bunch radius (1)
 Consider proton bunch radius

 Calzolari looked at yield for different bunch radius RMS
 Baseline ~ 5 mm
 Target = 3*bunch radius

[Calzolari]
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Bunch radius vs performance

 Small increase in bunch radius → slight degradation in 
performance

 Note that bunch structure is more complicated
 Emittance, beta at the target, etc needs to be considered
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Rep rate vs number of muons

 Reducing the rep rate while holding power constant
 Number of muons per second is unchanged
 Number of muons per bunch increases
 Increased luminosity
 Increased collective effects
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Rep rate vs number of muons

 Reducing the rep rate while holding power constant
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Cooling Performance
 Use Stratakis paper for rectilinear 

performance
 Use Fol study for final cooling 

performance
 Achieves ~ 25 micron final 

emittance
 Not quite closed on a robust baseline

[Stratakis et al]

[Fol]

[Fol]
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Cooling Emittance
 How does emittance vary along the 

cooling system?
 Note – assume each “final cooling” 

cell is 10 m long
 No correct model for charge 

separation and bunch merge
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Emittance in Cooling Section
 Significant reduction in 6D 

emittance
 Longitudinal emittance 

balances transverse 
emittance for a lot of final 
cooling

 Optimisation continues
 Bunch merge → assume 

100 % transmission
 Needs checking
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Emittance in Cooling Section

 Significant reduction in 6D emittance
 Longitudinal emittance balances transverse emittance for a lot 

of final cooling
 Optimisation continues

 Bunch merge → assume 100 % transmission
 Needs checking
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Conclusions
 Design choices for low energy complex are flexible
 Some areas for trade-offs

 Can trade proton beam power against other design aspects
 Add in target radius

 Can lower rep rate to quickly improve luminosity
 Where are the intensity/collective effects limits in the facility?

 Shouldn’t get hung up on a particular baseline necessarily
 Some areas for improvement

 More data on Carbon target yield
 Bunch merge needs understanding/checking
 Simulated final cooling performance is improving rapidly

 Knowledge of intensity limits important
 Target power
 Beam loading/space charge in cooling system
 Beam loading in acceleration
 Beam beam effects in collider
 Other?
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