

MInternational UON Collider Collaboration

IMCC Annual meeting 21 June 2023

From top level to RCS parameters

Antoine CHANCE (CEA) on behalf of the whole High-energy complex team with great help of magnet and RF colleagues

Funded by the European Union under Grant Agreement n. 101094300

Reminder on design baselines

- Base for the work is the US <u>Muon Accelerator Program</u> (MAP)
- High energy complex consist of a chain of rapid cycling synchrotrons (RCS)

Reminder on design baselines

Design oriented on reaching the performance parameter [webpage]
The relevant target parameters are: [presentation by D. Schulte]

Parameter	Unit	3 TeV	10 TeV	
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	Repetition rate of 5 Hz \rightarrow RCS
Ν	1012	2.2	1.8	
f _r	Hz	5	5	
 (average)	т	7	10.5	
ε _L (norm, 1σ _z σ _E)	MeV m	7.5	7.5 🥆	
σ _E / E	%	0.1	0.1	
σ _z	mm	5	1.5	

Top level requirements for the high energy complex (RCS)

- Goal: Accelerate one single bunch beam of μ+/μ
 - with a charge of about 2^e12 muons/bunch.
 - with a repetition frequency of 5 Hz.
 - from about 60 GeV to 5 TeV.

• Figure of merit:

- Fast acceleration (the muons decay).
- Feasible (if possible ;-)).
- Cost efficient (should be cheaper than a 100-km-long linac).
- Power efficient (do not use a nuclear plant to power the RCS!).

How fast?

- Muons decay very fast (Rest lifetime: 2.2 μs).
- We should accelerate as fast: τ_{acc} as low as possible.
 - Muon survival: $\frac{N_{ext}}{N_{inj}} = \left(\frac{E_{ext}}{E_{inj}}\right)^{-\frac{\iota_{acc}}{\tau_{\mu}(\gamma_{ext}-\gamma_{inj})}}$ for a linear ramp
 - If we assume only one RCS, we should have $\tau_{acc} = 10 \text{ ms}$ for a transmission of 65%.
 - The order of magnitude of the total acceleration time is 10 ms!
- To decrease cost operation, we should:
 - Minimize the total voltage and thus energy gain per turn.
 - \Rightarrow RCS as small as possible \Rightarrow high average field.
 - \Rightarrow Ramp quasi-linear \Rightarrow Optimize the dipole ramp to minimize the power consumption.
 - Find the best ratio extraction/injection ratio between the different acceleration stages.
- Tradeoff to find between RF and dipole powering costs.

What energy swing?

First test of Genetic Algorithms for accelerator parameters optimization

- Example: try to fit the RCS 4 in the LHC tunnel (27 km), the RCS 1 and RCS 2 in the SPS tunnel (7 km)
 - With stronger field magnets (16 T for the SC and 2.0 T for NC magnets)
 - Preserving the beam transmission through the chain
- Reach 4.4 TeV per beam after rough optimization
- Similar values reached by F. Batsch with parametric study

SPS and LHC tunnels, 1.8T and 16T for RCS 4 magnets

What energy swing?

Chain of rapid cycling synchrotrons, counter-rotating m+/m- beams
 → 60 GeV → 314 GeV → 750 GeV → 1.5 TeV → 5 TeV

- Hybrid RCSs have interleaved normal conducting (NC) and superconducting (SC) magnets.
- This would be the first hybrid RCSs in the world!

What RCS shape?

Courtesy: F. Batsch

• Number of synchrotron oscillations per turn proportional to $\sqrt{V_{RF}}$:

$$Q_{\rm S} = \frac{\omega_{\rm S}}{\omega_0} = \sqrt{-\frac{h\eta e V_{\rm RF} \cos \phi_{\rm S}}{2\pi E \beta^2}} \propto \sqrt{V_{\rm RF} \cos \phi_{\rm S}} \qquad \text{LHC: } Q_{\rm s} = 0.005$$

- Stable synchrotron oscillations and phase focusing only for $Q_s \ll \frac{1}{\pi}$
- RCSs would exceed this limit: 0.3 < Qs < 1.5</p>

Several longitudinal kicks per turn for small Qs between stations, i.e., small Qs/n_{RF}

- Distribute RF system over nRF sections
- n_{RF} is an important quantity to determine!
 - \rightarrow 32 for first RCS, 24 for higher energy.
- n_{RF} gives also the minimum number of arcs.

(T. Suzuki, <u>KEK Report 96-10</u>)

Number of

straight

sections: 2

What RCS shape?

Courtesy: F. Batsch

Number of synchrotron oscillations per turn proportional to $\sqrt{V_{RF}}$:

$$Q_{\rm S} = \frac{\omega_{\rm S}}{\omega_0} = \sqrt{-\frac{h\eta e V_{\rm RF} \cos \phi_{\rm S}}{2\pi E \beta^2}} \propto \sqrt{V_{\rm RF} \cos \phi_{\rm S}} \qquad \left[$$

- Stable synchrotron oscillations and phase focusing only for $Q_s \ll \frac{1}{\pi}$
- RCSs would exceed this limit: 0.3 < Qs < 1.5</p>

Several longitudinal kicks per turn for small Qs between stations, i.e., small Qs/n_{RF}

- Distribute RF system over nRF sections
- n_{RF} is an important quantity to determine!
 - \rightarrow 32 for first RCS, 24 for higher energy.
- n_{RF} gives also the minimum number of arcs.

al to $\sqrt{V_{RF}}$: LHC: $Q_s=0.005$ \rightarrow 32 for first RCS \rightarrow 24 for higher energy.

Number of

straight

sections: 30

Number of

straight

What RCS pattern?

- We assume an RCS made of FODO cells with phase advances of 90°.
- The number of cells has been optimized to maximize the arc filling ratio.

Trajectory variation in a hybrid RCS?

- In a hybrid RCS, the path length is not constant.
- \rightarrow f_{RF} tuning to be provided
- \rightarrow What frequency range and tuning speed?
- $\Delta f/f = \Delta I/(2\pi R) \approx 1.52 \cdot 10^{-6}$
- $\rightarrow \Delta f \approx 2 \text{ kHz} \rightarrow d\Delta f/dt \approx 10 \text{ MHz/s}$
- \rightarrow Driver for the tuner technology change.
- From injection to extraction the trajectory goes from the inner side to the outer side.
- The trajectory difference goes up to more than 13 mm.
- Should be taken into account for field quality definition.

What SC dipole field?

Fast ramping considerations

Ramping times ≈ cavity filling time:

 $t_{\rm acc} = 0.3 \,\mathrm{ms} \, pprox \frac{Q_L}{\omega} = 0.27 \,\mathrm{ms}$

- Optimization problem between magnet powering and RF
- Linear ramping \rightarrow constant $V_{\text{RF}} \rightarrow$ simplest RF solution, best for μ
- Sinusoidal ramp function → performance decrease of 50%
- Study quasi-linear ramping by e.g. natural resonant discharge of e.g. two harmonics

Courtesy: F. Batsch

Which Fast-ramping Magnets?

F. Boattini et al.

5.07 kJ/m

nternational

5.65...7.14 kJ/m 5.89 kJ/m

8

Main challenge is management of the power in the resistive dipoles (several tens of GW):

- Minimum stored magnetic energy
- Highly efficient energy storage and recovery

Simple HTS racetrack dipole could match the beam requirements and aperture

Differerent power converter options investigated

RF requirements ?

2.5

t [ms]

3.5

 1.5×10^4

1.3

£ 1.1

Brefham Breflin

Courtesy: F. Batsch

 $V_{\rm acc}$ and $G_{\rm acc}$ must be increased by 12% to achieve the same $\tau_{\rm acc} \Leftrightarrow \neq 200\%$ as for a sine-like ramp!

 Powering and ramping function optimization ongoing, combined with synchronous phase and RF voltage optimization (see <u>talk</u> by F. Batsch and <u>talk</u> by F. Boattini).

Which RF impedance? Which RF structure and frequency?

Calculations performed WITH NO transverse offset.
 Stability limit versus resonator parameters

Courtesy: David Amorim

Transverse impedance of dipole modes in first and second HOM dipole passband and transverse impedance threshold bar plot for the TESLA cavity geometry

HOM power?

- Example: Calculations performed for TESLA Low-loss
- (ABCI file from S.-A. Udongwo)

0.1

Beam-induced power losses

FFA as Alternatives?

Courtesy: Max Topp-Mugglestone

- Why FFAs?
 - Time-independent magnetic fields
 - No ramp times
 - Rate of acceleration limited only by RF
 - Mitigates engineering challenges of designing and powering fast-ramping dipoles
 - All magnets can be superconducting DC magnets
 - At high energy, pulsed synchrotrons limited by the maximum field in pulsed magnets.
- Limited understanding of optics
 - Unique coupling behaviour
 - Dominated by skew quadrupole focussing
 - Solenoid components in fringe fields
 - Nonplanar orbits
- Challenging optimization: update foreseen end 2023.
- See Scott Berg's presentation [here]

Parameters and tools. Table under constant evolution.

Detailed parameter table: [link]

	RCS1→314 GeV	RCS2 → 750GeV	RCS3 → 1.5TeV	1) H Basic data 1) Particles H Costs U Type	Symbol - -	Unit MC	Stage 1 Value Details µ RCS	Stage 2 Value J/	Details Value United States S
Circumference, $2\pi R$ [m]	5990	5590	10700	12 13 Dynamics 14 Acceleration time 15 Injection energy 12 Ejection energy		[ms] [MeV]/u [MeV]/u	0.34 63000 313830 defined by	1.09704595 313830 750000	2.37 750000 1500000
Energy factor, <i>E</i> _{ej} / <i>E</i> _{inj}	5.0	2.4	2.0	33 Energy ratio 24 Momentum at e 35 Momentum at e 26 Number of tums 27 Planned Survival rate	p/c p/c n _{sen} N_N _N	MeV/c MeV/c	4,98 63106 313935 17 0.9	2.39 313935 750106 55 0.9	2.00 750106 1500106 66 0.9
Repetition rate, f _{rep} [Hz]	5 (asym.)	5 (asym.)	5 (asym.)	Total survival rate Accel, Gradient, linear for survival Required energy gain per turn Transition gamma	N_[N_ G 	[MV/m] [MeV]	0.9 2.44 14755 20.41	0.81 1.33 7930 20.41	0.729 1.06 11364
Number of bunches	1μ⁺, 1μ⁻	1μ⁺, 1μ⁻	1μ⁺, 1μ⁻	Injection relativistic mass factor Ejection relativistic mass factor Injection v/c Ejection v/c S	Υ _{n1} Υ _n β _{n1} β _{n1}		597 2971 0.9999986 0.999999943	2971 7099 0.999999943 0.999999901	7099 14198 0.9999999901 0.9999999975
Bunch population	>2.5E12	>2.3E12	2.2E12	Parameter Classical RCS Radius Circumference Circumference Ratio Pack fraction	R 2xR R _{pi} /R, ?	(m) (m) -	953.3 5990 0.61	953.3 5990 1 0.61	1703.0 10700 1.79 0.628
Survival rate per ring	90%	90%	90%	4 Tot straight section length 5 Injection bending field (average) 7 RF Systems 7 Main RF frequency	L _{av} B _{at}	(m) (T)	2334.7 0.36 TESLA 1300	2335.7 1.80 TESLA 1300	3975.7 2.34 TESLA 1300
Acceleration time, $t_{\rm acc}$ [ms]	0.34	1.04	2.37	78 Harmonic number 79 Revolution frequency ej 80 Revolution period 81 Max RF voltage 82 Max RF power	h I _{err} Trev V _{ii} P _{er}	[kHz] [µs] [GV] [MW]	25957 50.08 20.0 20.87	25957 50.08 20.0 11.22	46367 28.04 35.7 16.07
Number of turns	17	55	66	83 RF Filling factor 40 Number RF stations 63 Cavities 63 Number of cavities 63 Peak Impedance 68 Gradient in cavity	? ΔΕ/L	[Ω]	0.4 Around 50 9-cell 696 30	0.4 Around 50 9-cell 374 30	0.45 Around 50 9-cell 536 30
Energy gain per turn, ΔE [GeV]	14.8	7.9	11.4	Average energy gain per total straight Accelerating field per total straight Accelerating field gradient, with FF Stable phase Conversion factor mm mrad – sVs	ΔΕ/L ΔΕ/L ΔΕ/L Φ ₁	[MeV/m] [MeV/m] [MV/m] [*] Vsimm mr#	6.3 8.9 22.3 45 69.40	3.4 4.8 12.0 45 165.86	2.9 4.0 9.0 45 331.72
Acc. gradient for survival [MV/m]	2.4	1.3	1.1	 № Longitudinal emittance (pE * 4cz) ∞ Ingitudinal emittance (phase space area) ∞ Injection bucket area 9 Ejection bucket area 9 Bucket area reduction factor 		[eVs] [eVs] [eVs] [eVs]	0.0257.5 MeV m 0.079 0.62 1.37 0.172	0.025 0.079 1.01 1.56 0.172	0.025 0.079 1.40 1.97 0.172
Acc. field in RF cavity [MV/m]	30 (45 optimistically)	30	30	Profitional detailorit tume Vertical betarron tume Average horizontal Twiss beta Verage vertical transformer verage vertical Verage vertical transformer verage vertical Verage vertical transformer verage	Q, Bh By	[m] [m] [kHz] [kHz]	10 10 76.33 34.20	10 10 25.07 16.22	10 10 14.53 10.27

Parameters and tools: Table under constant evolution.

Detailed parameter table: [link]

				33			Stage 1	Stage 2	Sta	tage 3
	RCS1-314 GeV	RCS2-750GeV	RCS3-15ToV	14 Basic data 15 Particles	Symbol	Unit -	Value Detail	s Value	Details	Value
				16 Costs		MC	0.00	Indexed DOD		wid DOP
				11			NG0	injuna inco	1191	1000
	5000	5500	40700	13 Dynamics	T	fms]	0.34	1.09704595		2.37
Circumterence, $2\pi R$ imi	5990	5590	10700	21 Injection energy	E	[MeV]/u	63000	313830		750000
•••				22 Ejection energy	E	[MeV]/u	313830 defined by	r# 750000		1500000
				22 Energy ratio 34 Momentum at e	E C	Mellic	4.98	2.39		2.00
England for the EVE	5.0	0.4	0.0	25 Momentum at e	p/c	MeV/c	313935	750106		1500106
Energy factor. End End	5.0	2.4	2.0	28 Number of turns	Dun		17	55		66
	••••			27 Planned Survival rate	N ₂ /N ₁₀		0.9	0.9		0.9
				Total survival rate Accel Gradient linear for survival	n in	- [MV/m]	0.9	0.81		0.729
				38 Required energy gain per turn	∆E.	[MeV]	14755	7930		11364
Repetition rate, t., IHZI	5 (asym.)	5 (asvm.)	5 (asym.)	31						
rep []		0 (00)	e (acynn)	22 Transition gamma	T ₀		20.41	20.41		~30
				33 Injection relativistic mass factor	7,1		597	2971		7099
				Ejection relativistic mass factor	2 ₆		2971	0.000000043		14198
Number of bunches	1u ⁺ . 1u ⁻	1u ⁺ . 1u ⁻	1u ⁺ . 1u ⁻	³⁴ Election v/c	B.		0.999999943	0.9999999901	0	.99999999975
	· pc , · pc	1 pc , 1 pc	· µ , · µ	32						
				Parameter Classical RCS	P	fml	953.3	953.3		1703.0
	0 5540	0.0540	0.0540	4 Circumference	2xR	(m)	5990	5990		10700
Bunch population	>2.5E12	>2.3E12	2.21-12	41 Circumference Ratio	B _{p1} /B ₁	1.1		1		1.79
Banon population	FLIGETE			42 Pack fraction	7		0.61	0.61		0.628
				 Bend radius Tot, straight section length 	6.	m [m]	581.8	2335.7		10/0.2
	000/		A A A (45 Injection bending field (average)	В.,	ET I	0.36	1.80		2.34
Survival rate per ring	90%	90%	90%	75 RE						
our mai rato por ning	0070	0070	0070	76 Systems	i	-	TESLA	TESLA		TESLA
				78 Harmonic number	h	[MIN2]	25957	25957		46367
			a a=	79 Revolution frequency ej	l _{or}	[kHz]	50.08	50.08		28.04
Acceleration time t Imsl	0.34	1 ()4	2 37 1	80 Revolution period	Trev	[µs]	20.0	20.0		35.7
ricocioration timo, t _{acc} [mo]	0.01	1.01	2.01	Max RF voltage Max RF power	P.,	[GV]	20.87	11.22		16.07
				83 RF Filling factor		-	0.4	0.4		0.45
•••				64 Number RF stations 85 Cavities	1	1	Around 50 9-cell	Around 50 9-cell		Around 50 9-cell
Number of turns	17	55	66	Number of cavities	?		696	374		536
	17	00	00	87 Peak Impedance	450	[Ω]	20	20		20
	\frown		\frown	 Bradient in cavity Average energy gain per total straight 	DE/L DE/L	[MeV/m]	6.3	3.4		2.9
				90 Accelerating field per total straight	AE/L	[MeV/m]	8.9	4.8		4.0
Energy gain per turn $\Lambda E[GeV]$	148	79	(114)	91 Accelerating field gradient, with FF	ΔE/L	[MV/m]	22.3	12.0		9.0
ΔL [ΔL [ΔL [ΔL [ΔL]	UT.0	1.0		92 Stable phase 93 Conversion factor mm mrad – eVs		[*] Vsimm mra	45	45		45
				94 Longitudinal emittance (oE * 4oz)	ø,	[eVs]	0.0257.5 MeV m	0.025		0.025
				95 Longitudinal emittance (phase space area)	¥.,	[eVs]	0.079	0.079		0.079
Acc. gradient for survival [M///m]	24	13	11	96 Injection bucket area	A	[eVs]	0.62	1.01		1.40
Acc. gradient for Survival [WW/III]	2.7	1.0	1.1	98 Bucket area reduction factor	AJA	[eVs]	0.172	0.172		0.172
				99 Horizontal betatron tune	Q,					
				100 Vertical betatron tune	Q _y					

erage ve

76.33 34.20 1.52 25.07 16.22

0.50

20

10.27

• High $\Delta E = V_{RF} \cdot cos(\phi_s) \rightarrow$ Unique RF requirements such as high synchrotron tune

Parameters and tools: Table under constant evolution.

Detailed parameter table: [link]

	RCS1→314 GeV	RCS2→750GeV	RCS3→1.5TeV	1) 14 Basic data 13 Particles	Symbol	Unit -	Stage 1 Value Detail	Stage 2 s Value D	Jetails Value
				16 Costs 17 Type 18 19 Dynamics	:		RCS	hybrid RCS	hybrid RCS
Circumference, $2\pi R$ [m]	5990	5590	10700	28 Acceleration time 21 Injection energy 29 Election energy	T _{ass} E _{rei}	[ms] [MeV]/u	0.34 63000	1.09704595 313830	2
				22 Ejection energy 23 Energy ratio 24 Momentum at e	E_/E_	MeV/c	4.98 63106	2.39	2
Energy factor, E./E.	5.0	2.4	2.0	25 Momentum at e 26 Number of turns	p/c n _{sen}	MeV/c	313935 17	750106	1500
	0.0			27 Planned Survival rate 28 Total survival rate	N_IN _N	1	0.9	0.9	0.7
Departition note f [1]-1				Accel. Gradient, linear for survival Required energy gain per turn	G	[MV/m] [MeV]	2.44 14755	1.33 7930	1
Repetition rate, T _{rep} [HZ]	5 (asym.)	5 (asym.)	5 (asym.)	22 Transition gamma	T ₀		20.41	20.41	
-1				Injection relativistic mass factor Election relativistic mass factor	T _N		597	2971	70
Number of hunches	1+ 1	1+ 1	1+ 1	25 Injection v/c	Per	%	0.9999986	0.999999943	0.99999999
	τμ, τμ	ιμ , ιμ	τμ, τμ	38 Ejection v/c	Pe	%	0.99999943	0.9999999901	0.99999999
				24 Parameter Classical RCS 28 Radius	R	[m]	953.3	953.3	170
Punch nonulation	S 2 5 E 1 2	> 2 2 E 1 2	2 2 2 4 2	Circumference	2xR	[m]	5990	5990	107
Burien population	>2.3512	>2.3E12		 Pack fraction 	2	1	0.61	0.61	0.6
				43 Bend radius	P ₀	m	581.8	581.8	107
Curry involutors por ving	000/	000/	000/	45 Injection bending field (average)	В.,	m	0.36	1.80	2
Survival rate per ring	90%	90%	90%	75 RE 76 Systems			TESLA	TESLA	TESI
	\frown		\frown	77 Main RF frequency 78 Harmonic number	f _{ee}	[MHz]	1300	1300	13
A A A A A A A A A A A A A A A A A A A			0.07	79 Revolution frequency ej	l _{er}	[kHz]	50.08	50.08	28.
Acceleration time Imsi	0.34	1.04	2.3/	Revolution period Max RF voltage	V _m	[Jus]	20.0	20.0	35
and the second second second				82 Max RF power	Pg	[MW]	0.4	0.4	
	\checkmark		\checkmark	84 Number RF stations	1	1	Around 50	Around 50	Around
Number of turns				Number of cavities	?	1.1	9-cell 696	374	9-0
				87 Peak Impedance 88 Gradient in cavity	SE/L	[Ω] [MV/m]	30	30	
				Average energy gain per total straight	AE/L	[MeV/m]	6.3	3.4	
Energy gain per turn $A \in [C_0]/1$	•	•	+	91 Accelerating field gradient, with FF	ΔE/L	[MV/m]	22.3	4.8	
Energy gain per turn, ΔE [GeV]			•	92 Stable phase 93 Conversion factor mm mrad – eVs		[*]	45	45	331
	·			94 Longitudinal emittance (σE * 4σz)	ν,	[eVs]	0.0257.5 MeV m	0.025	0.0
	East ramning	within $R = -$	+1 8 T	 Longitudinal emittance (phase space area) Injection bucket area 	6', A	[eVs]	0.079	0.079	0.0
Acc. gradient for survival INV/ml	i dot i dinping	$D_{\rm nc}$	1.0	97 Ejection bucket area	A.,	[eVs]	1.37	1.56	1
				99 Bucket area reduction factor 99 Horizontal betatron tune	Q.	1	0.172	0.172	0.1
				100 Vertical betatron tune	Q,	-			
Acc. field in RF cavity [MV/m]	•	•	1	10 Average nonzontal Twiss beta	βν	[m]	10	10	
				101 Injection synchrotron frequency 104 Ejection synchrotron frequency	13.45 14-	[kHz]	76.33	25.07	14.
				115 Injection synchrotron tune Q	f. II.		1.52	0.50	0.
Rampirate Ř [T/s]	(1100)	3281	(1518)	tte rejection synchrotron tune Q	I _{SO} /I _{SO}		0.68	0.32	0.
	(100)	0201							· · ·
						100 m 100 m		21	Ser Cont

A lot of fruitful discussions

- What ramping is optimum?
 - Magnet people: Linear ramp needs a lot of power. Quasi-linear ramp for consumption minimization.
 - **RF people**: going away from a linear ramp will ask for extra gradient and thus extra voltage.
 - Optics people:
 - Muon survival is mainly linked to the acceleration time rather than the ramp shape.
 - Optimization of the synchronous^phase
 - What is the most cost effective between more RF cavities/voltage and more powering power?
- How many power stations?
 - Longitudinal dynamics: we need at least 32 RF stations.
 - Optics people:
 - With only 32 stations, the curvature radius vary by near 1% due to the magnetic field variation while running one arc → Needs more RF stations to have a smoother energy variation!
 - But if we increase the number of RF stations, we need to fully integrate the cavity in arc cells.
 - Can we live with dispersion in cavities? If not, need to use multi-bend achromats → very small momentum compaction.
 - Beam dynamics people:
 - Keep a large momentum compaction for stability!

A lot of fruitful discussions

- What field quality?
 - Magnet people:
 - Should we use harmonics or good field region?
 - What tolerance on dynamic errors (powering supplies) and static errors (misaligments)?
 - Optics people:
 - Massive tracking studies are necessary: to use field maps. Very likely to have strong detuning of the machine because
 of misalignements/orbit errors in the sextupoles.
 - Order of magnitude on the error spectrum?
 - What are the magnitude of Eddy currents? Maybe a driver.
 - Limitation on fast dipole correctors?
 - Beam dynamics people:
 - Collective effects will give the minimum beam pipe radius.
- Interfaces with collider/muon cooling?
 - What matching conditions to the colliders and between RCS? Emittance may grow by 90%!
 - Needs bunch compression during the acceleration to get the collider bunch length.
 - What longitudinal profile after muon cooling?

A lot of fruitful discussions

- Which transverse HOM and cavity geometry?
 - Beam dynamics:
 - The October specifications were with no transverse cavity offset.
 - With current HOM, we need a 2-turn damper. Otherwise, the beam is lost after a few RF cavities (less than one turn!) if a transverse error of a few tens of µm. Work in progress.
 - RF people:
 - HOM tolerances will be probably updated.
 - Comparison of different geometries and frequencies to handle HOM power and required impedances.
- Other topics: Beam instrumentation? Shielding? Vacuum?...
- My final conclusion:
 - That is crucial to discuss between RF, magnet, beam dynamics, shielding, and optics people!
 - A hybrid synchrotron with so fast acceleration is really a unique (and exciting) machine!

MInternational UON Collider Collaboration

Thank you to all the team for the great work

Thank you for your attention

2) What driving devices?

We need fast-ramping dipoles.

- Repetition rate of 5 Hz but ramp in a few ms.
- Should be in the linear response in the beam ramp.
- Power efficient.
- We need **SC dipoles** (with quite large aperture to manage beam losses).
 - To increase the average bending magnets.
- We need a lot of RF cavities to accelerate.
 - Large gradient to reduce the number and the footprint.
 - Good quality factor for cost operation.
 - Small impedance for collective effects (discussed later)

$$L_{NC} = 2\pi \frac{B\rho_{ext} - B\rho_{inj}}{B_{NC,ext} - B_{NC,inj}} = \pi \frac{B\rho_{ext} - B\rho_{inj}}{B_{NC}}$$
$$L_{SC} = 2\pi \frac{B\rho_{inj}B_{NC,ext} - B\rho_{ext}B_{NC,inj}}{B_{SC}(B_{NC,ext} - B_{NC,inj})} = \pi \frac{B\rho_{inj} + B\rho_{ext}}{B_{SC}}$$

accommodate different beams