

Collider Ring Parameters

C. Carli

Muon Collider annual meeting, 21th June 2023

- Luminosity
- Collider Ring Parameters
- Summary

Luminosity

• Luminosity per IP given by: $L = \frac{N^2}{4\pi \,\varepsilon_{ph}\beta^*} f_{hg} f_r \frac{\gamma \,T_{\mu}}{2T_{rev}}$

for round muon beams and one bunch per beam and with

- f_r the complex repetition rate, N the number of muons in bunch
- $\varepsilon_{ph} = \varepsilon_n / \gamma$ the physical rms emittance with $\varepsilon_n = 25 \ \mu m$ the normalized rms emittance and γ the relativistic Lorentz factor
- β^* the Twiss betatron function at the IP, σ_z the rms bunch length
- $T_{\mu} \approx 2.2 \ \mu s$ the muon life-time at rest, T_{rev} the revolution time
- f_{hg} the "hourglass" luminosity reduction factor a function of σ_z/β^* (for short bunches $f_{hg}(\sigma_z \ll \beta^*) \approx 1$)
- Assumptions
 - Bunch length $\sigma_z = \varepsilon_L / (\gamma \sigma_\delta)$ expressed by geometric longitudinal rms emittance ε_L and rms relative momentum spread
 - $\beta^* = \sigma_z$ giving moderate luminosity loss due to hourglass effect $f_{hg} = 0.758$
 - Revolution time $T_{rev} = 2\pi \frac{\gamma E_{\mu}}{e c^2 \bar{B}}$ with $E_{\mu} = 105.658$ MeV the muon rest energy and \bar{B} the average bending field

→ gives luminosity per IP
$$L = \frac{e c^2 T_{\mu}}{16 \pi^2 E_{\mu}} \frac{f_r N^2 \gamma^2 \sigma_{\delta} \overline{B} f_{hg}}{\varepsilon_n \varepsilon_L}$$

Large (average bending) magnetic field helps

- Large longitudinal acceptance to operate with large rms momentum spread σ_{δ} => corresponds to small $\beta^* = \sigma_z$ - both a challenge for lattice design
- Consequence of assumption and optimizations made:
 - ♦ Bunch length σ_z and β^* decrease with energy
 - o Divergence at IP independent of energy!
 - Lattice design becomes more difficult for higher energies (higher beam rigidity, longer innertriolet, more chromatic effects ...)

Nominal 10 TeV com Collider Parameters

Parameter	Symbol	Value
Beam energy	Ε	5000 GeV
Relativistic Lorentz factor	γ	47 322
Circumference	С	≈ 10 000 m
Magnetic (average bending) field	\overline{B}	≈ 10.48 T
Repetition rate	f_r	5 Hz
Bunch intensity (one bunch per beam)	N_{μ}	$1.8 \cdot 10^{12}$
Beam power for both beams together	P_B	14.4 MW
Power from muon decays to W absorber	P_L	$\approx 5 \text{ MW}$
Power from decays to cold mass (40 mm W)		$\approx 5 \text{ W/m}$
Normalized transverse rms emittance	ε_n	25 μm
Physical transverse rms emittance	$arepsilon_{ph}$	0.528 nm
Long. geometric rms emittance $\gamma \sigma_z \sigma_\delta$	\mathcal{E}_L	70 mm
Rms relative momentum spread	$\sigma_{\delta} = \sigma_p / p$	$1 \cdot 10^{-3}$
Rms bunch length	σ_z	1.5 mm
Twiss betatron function at the IP	eta^*	1.5 mm
Rms beam size at IP	$\sigma_{\perp,IP}$	0.89 µm
Luminosity	L	$19.5 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Beam-beam tune shift per IP		0.078

Summary

- Parameters driven by maximization of luminosity
 - Little (no?) margin to change without lumi reduction
- Collider design challenging
 - Optics for small β^* with large beam rigidity and momentum spread
 - □ Large chromatic effects with strong quadrupoles at location with large β 's
 - Challenging chromatic compensation scheme and neg. momentum compaction arcs
 - Energy deposition and radiation from muon decay products
 - Radiation due to neutrinos reaching Earth's surface
 - "Wobbling" scheme challenging mechanical system, impact optics design
 - Beam induced background to experiment
- Some of the impacts on hardware
 - High field, large aperture magnets, most of the them combined function (e.g., horizontal bending, quadrupolar component and small vertical bending for "wobbling")
 - Stringent field quality requirements for some magnets conflicting with feasibility?
 - Short straight sections between magnets Feasible field versus position profiles?
 - Showers from muon decay products mostly stopped by W absorber
 - □ Cryogenic system to remove residual heat load to cold mass (and W absorber ..)
 - Precise (how?) mechanical magnet movement system for wobbling .. feasibiliy?