Demonstrator Layout – Requirements from Beam Optics

NINTERNATIONAL UON Collider Collaboration

Chris Rogers*, ISIS Neutron and Muon Source,

*chris.rogers@stfc.ac.uk

Muon Cooling Demonstrator

- Ionisation cooling is a key technology for the Muon Collider
 - It is entirely novel
 - Proof of principle "MICE" in 2020
 - But only a single cooling element
- Now need to deliver a demonstration of 6D ionisation cooling
 - Demonstrate full capability
 - Sufficient emittance reduction to convince that we can deliver the full cooling channel

Cooling for a Muon Collider

- Challenges
 - Dispersion and closed orbit control for 6D cooling
 - Successful RF operation and suppression of RF breakdown
 - Maintaining adequate acceptance between stop bands
 - Magnet engineering
 - Integration of magnet with RF and absorber
 - Day-to-day operation and instrumentation
- Also intensity/collective effects → proton beam test?
 - Space charge, beam loading, absorber/RF window heating
 - Decay radiation load on magnets

R&D Programme

RF Test programme, with upgradeable magnet configuration, to test novel RF technologies

Prototype of a cooling vacuum vessel to test magnet, absorber and RF integration

Full cooling vacuum vessel with beam

Full cooling lattice with beam

Comparison with Existing Data

	MICE	Demonstrator
Cooling type	4D cooling	6D cooling
Absorber #	Single absorber	Many absorbers
Cooling cell	Cooling cell section	Many cooling cells
Acceleration	No reacceleration	Reacceleration
Beam	Single particle	Bunched beam
Instrumentation	HEP-style	Multiparticle-style

CERN Siting Options

C/O Roberto Losito

Science & Technology Facilities Council

NuMI beam

Paley et al, Measurement of charged pion production yields off the NuMI target, PRD vol 90, 2014

Assume (Vaguely worded in nuSTORM feasibility study):

Expected muon yield

Invoke magic collimator fairies For rectilinear cooling B8: $\sigma(t) = 0.1 \text{ ns}$ $\sigma(p) = 0.010 \text{ GeV/c}$ $\sigma(px) = 0.010 \text{ MeV/c}$ $\sigma(x) = 3 mm$ Selection: factor 0.01 pz selection factor 1 pt selection factor 0.01? position selection Per single RF bucket: 0.1 ns/450 ns = factor 0.0002 time selection Adding up all RF buckets in the pulse 0.1 ns*650 MHz = factor 0.065 time selectionYields

2e5 muons per RF bucket 5e8 muons in all RF buckets in a pulse

Will lower energy protons help? The number of p.o.t. is probably the same

Layout – 10 kW option

Science & Technology Facilities Council

Preliminary optics layout

- Preliminary optics layout seems okay
 - Still work in progress
- Dipoles
 - ~ 0.7 T, 30°
 - 0.5 m long
- Quads
 - ~ 1 T/m, TBC
 - 0.5 m long
- Approx 1.5m by 4m region for beam stop
- Followed by beam preparation system

nuSTORM

- New site compatible with nuSTORM
 - Measurement of neutrino scattering cross sections
 - Beyond Standard Model physics programme
 - Muon beam test area for Demonstrator
- Demonstration of highest-current high-energy muon beam facility
 - Pion beam handling
 - Target concepts can be tested
 - FFA storage ring \rightarrow rapid acceleration concepts

Muon energy [MeV/c]

Quads Collimator

NuSTORM layout – c/o Jaroslaw Pasternak et al

Science & Technology Facilities Council

Layout – nuSTORM (2)

Beam preparation system

- ~ 100 ps pulsed muon beams don't exist
 - Muons have only rarely been accelerated in conventional RF cavity
 - Low emittance muon beam challenging to achieve
- Need to consider a system to prepare the muon beam
 - Assume momentum collimation in switchyard
 - Transverse collimation
 - Longitudinal phase rotation

Beam Preparation System

Value
1 m
0.5 T
0.05 m
0.67 T
1.04 m
7.5 MV/m
0° (Bunching)
704 MHz

Preliminary Cooling Cell Concept

Optics vs momentum

ier on

- Operation in area A
 - High dynamic aperture
 - Larger β
 - Larger emittances
- Operation in area B
 - Lower dynamic aperture
 - Smaller β
 - Lower emittances
- Lattice operates in area B
 - May wish to check out area A also

Be RF & LiH Performance

- Use Beryllium for RF cavity walls
- Use LiH in absorber
- Good cooling performance
 - Transverse and longitudinal emittance reduced by ~ 20 %
 - Approx factor two reduction in 6D emittance
- Optimisation ongoing
 - Assumes perfect matching for now

IH2 Performance (Zhu Riuhu, IMP CAS)

Tolerance study

Tolerances

- Looked at solenoid errors in demonstrator lattice
 - Baseline has
 - $B(z, r=0) = b_k \sin(2\pi k z)$
- Tolerances, assuming 1 % dilution of beta is tolerable
 - $b_1=1 \rightarrow 0.2 \text{ T vs } 7 \text{ T nominal}$
 - $b_2=2 \rightarrow 0.02 \text{ T vs } 1 \text{ T nominal}$
 - $b_3=3 \rightarrow 0.5 \text{ T vs } 0 \text{ T nominal}$
 - $b_{0.5}$ =0.5 → 0.02 T vs 0 T nominal
- May wish to consider structure of vacuum vessels to avoid systematic effects (e.g. k=0.5 issue)

- Demonstration of cooling is a key technology requirement for Muon Collider
 - Improved demonstrator lattice studied
 - Beam preparation system looks okay
 - Looking at layout from target to cooling system for CERN site
 - Happy to look at non-CERN sites!
 - Working on initial transport line and integration with nuSTORM
- Aim is to deliver a design by 2026
 - In time for next European strategy update

