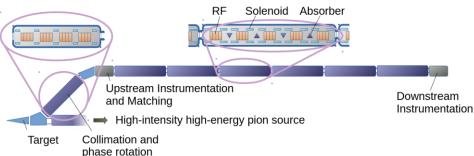


- BIDs
- Recap CERN options
- Targetry possibilities
- Absorber / Beam windows
- Conclusions

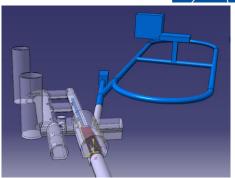


Targetry & BIDs at the demonstrator

- Muon Production Target
- P+ dump / shielding
- Collimators for the high energy muons at the beam preparation system
- Proton beam windows
- Beam windows in the cooling line.
- Cooling absorber
- Magnetic Horn
- p+ beam delivery BID's (collimators, beam-stoppers, etc)
- Potentially other ?

C. Rogers and D. Schulte, "A Demonstrator For Muon Ionisation Cooling", WEPOPT027

Demonstrator at CERN


Recap of the two main options at CERN:

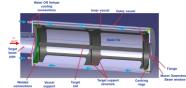
TT7 & ISR complex

- Low Cost. Reduced CE
- Existing TT7 infrastructure
- Limited space and beam power ~10kW
- Surface. Radio Protection limitations.
- Compatible with demonstrator, but not with final facility nor nuSTORM.

<u>First ideas</u> proposed by M. Calviani in the 1st Community meeting. **TT10 line option seen as most attractive** (<u>R. Losito presentation</u>).

TT10

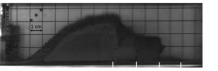
- Beam from PS (10¹³ p+ @26 GeV in 7ns)
- Underground (~40m, in the molasse), allowing O(80kW)
- Staging possible to final facility & nuSTORM integration.
- High Cost.

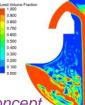

Targetry at the demonstrator

C-Target studies for final 2 MW facility at 5Hz (5e14 ppp), 5 GeV, 5 mm 1σ, 2ns

Assuming Demonstrator with PS's 10e13 ppp @26 GeV in 7ns

Demonstrator C-Target can likely be a very identical concept to final proposal


- With beam on target O(.5) mm $1\sigma \rightarrow$ Test can be used to assess dynamic stresses response of the target
- Low average power (~10kW in TT7) \rightarrow will limit operating temperature
 - Reduced cooling system &/or eventually dedicated heating may be employed to push demonstrator target to high temperature (2-3K Celsius range)
 - Reduced services (cooling, wrt to final MuC).
- High cyclic assessments (>>10⁵ cycles ?) e.g. HiRadMat usually bound to few pulses.
- Benchmark engineering and Fluka calculations



Targetry at the demonstrator

- **Demonstrator can(shall ?) be a multi-target test facility**. Either in parallel with cooling experiment or ad-hoc. Feasibility of the different concepts can be pursued
 - C-Target
 - Fluidized W &/or static W powder target
 - (HLM) Pb curtain target &/or liquid lead pool
- Possibility to (re)test spent targets.
 - CNGS? (probe dpa + MuC pulse conditions)
 - Other (e.g. RADIATE samples ?)
- Test beam window materials & designs
- Design/integration/remote handling proof of concept.
- Opportunity to develop magnetic horns and test them at CERN.
- Test the SC solenoid around the target and alike
- CERN sitting allows direct access to services and capabilities

W powder tests. Pb curtain concept 🌂

AD-T Horn at CERN

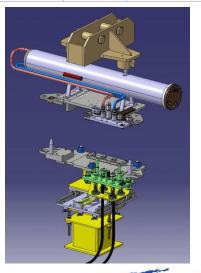
Targetry at the demonstrator

What other testing platforms can we already use @ CERN ?

The HiRadMat facility (<u>https://hiradmat.web.cern.ch/hiradmat-facility</u>)

Slow Extraction (SX) TCC2 testing area @ CERN's North Area

NA SX TCC2 Testbench


- 400 GeV/c p+
- Up to 4e13 ppp
- SX (1s) but maybe fast SX (~20ms) is possible.
- Plugin-in table. Thought for fully remote interventions

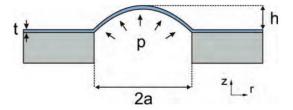
https://journals.aps.org/prab/abstract/10.1103/ PhysRevAccelBeams.22.123001

	Protons	²⁰⁸ Pb lons
Beam Momentum	440 GeV/c	173.5 GeV/n (36.1 TeV per ion)
Pulse Energy	up to 2.4 MJ	up to 21 kJ
Minimum Bunch Intensity	5 · 10 ⁹ protons	3 · 10 ⁷ ions
Maximum Bunch Intensity	1.2 · 10 ¹¹ protons	7 · 10 ⁷ ions
Number of Bunches	1 to 288	52
Maximum Pulse Intensity	3.46 · 10 ¹³ protons	3.64 · 10 ⁹ ions
Bunch Length	11.24 cm	11.24 cm
Bunch Spacing	25 ns	100 ns
Pulse length	7.95 us	5.2 us
Cycle length	22.9 or 40.8 s	13.2 s
Beam Size at Target	variable around 1mm ²	variable around 1 mm ²

and the second sec

Cooling absorber / windows

by Jose A. F. Somoza


Usual windows will significantly perturb the beam at the last cooling stages:


- Thin film windows allow thickness <1µm with significant mechanical strength
- Possible materials: Si₃N₄, SiC, C, etc.
- Already started: Mechanical characterization of windows at different temperature (from cryogenic to high temperature) → Bulge tests [1]

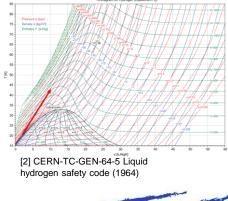
Demonstrator

- Required: benchmark thermomechanical simulations with muon beams → Demonstrator
- Integration window + absorber not yet available → Integrity of the window exposed to repetitive pulsing

[1] B. Merle, Mechanical Properties of Thin Films Studied by Bulge Testing (FAU University Press, Erlangen, 2013).

Cooling absorber / windows


by Jose A. F. Somoza



- Contradictory requirements:
 - High density \rightarrow to limit the length of the superconducting solenoid (<50 cm)
 - Low density → to limit the pressure increase after power deposition and allow the use of thin windows (<1 to 5 bar depending on the diameter)
- Conceptual design of absorber at final cooling still under development
 - Possible concepts to be evaluated: density gradient driven by temperature, H₂ bubble next to window, solid H₂, any other?

Demonstrator

- Demonstrator to test relevant muon beams
- Study self-contained system. Safety [2] similar to H₂ storage equipment for simplicity

Conclusions

 If tailored as such, Demonstrator can be a strategic platform for proof-of-concept target designs for the final collider, material testing, benchmarking studies.

Targetry

- At first sight, no major showstopper nor critical pre-experimental program required for the demonstrator.
- Possible challenges ? → multi target, particularly if considering C, fluidized W, HLM may be challenging to integrate and include all in the Demo program. Services (cooling, HLM & fluidized W circuits pumping circuits) can likely be eased for a Demo. To what extent ?
- Pre-experimental program ? → Will depend on the maturity and likely offline testing & characterization of the Targetry options.
- What can we learn ? → Full suite assessment of pulse response, operational conditions, integration constrains, simulation benchmark, etc

Windows & absorbers: Readiness of the Cooling absorber & beam windows strongly dependent on ongoing studies. \rightarrow Possibly requiring a dedicated experimental program ?

Other: Possibly Horn design/testing in synergies with target developments ?

MInternational UON Collider Collaboration

Thank you very much for your attention