

Muon Cooling Demonstrator RF system considerations

Alexej Grudiev,

With great help of Roberto Losito, Chris Rogers, Igor Syratchev, Davide Aguglia

21/06/2023

Conceptual layout

Rui Ximenes 2nd Community meeting

MUC Demonstrator VERY Conceptual layout → To be taken with a "grain of salt"

Muon cooling demonstrator layout

Parameters of RF system (beam dynamics specifications)

	Collimation system	Cooling cells	comments
	Cavity type 1	Cavity type 1	One single cavity design can be used
Number of RF cavities	16	20 x 6 modules = 120	
RF frequency [MHz]	704	704	
Accelerating gradient [MV/m]	15	28.5	No transit time factor is included. It is the amplitude of the accelerating electric field on crest, on axis (For ideal pillbox it is also max surface electric field).
Cavity length [m]	0.125	0.105 or 0.120 (TBC)	
Beam window radius [m]	0.050	0.045 to 0.090 (TBC)	
Beam window thickness (Be) [um]			Assuming 2 windows per cavity
			All numbers are provisional

Parameters of the RF system

	Collimation system	Cooling cells	comments
Cavity parameters	Cavity type 1	Cavity type 1	One single cavity design is used
f [MHz]	704	-	
Q-factor	~26000	-	
R/Q [circOhm]	~100	-	
Filling time: ~Q/f [us]	~30	-	
Power source requirements			
Max. Nominal Gradient [MV/m]	20	30	
RF power loss in one cavity [MW]	1	2	
Pulse length: [us]	~30 + 0.1	~30 + 0.1	~ filling time + bunch train
Repetition rate: [Hz]	~5	~5	?
RF power from the klystron(s) [MW]	1.5	3	50% margin for all. ESS:30%
Number of klystrons	16	2x120 = 240	1.5 MW per klystron ESS has ~200 klystrons

RF power source: 704 MHz

Commercially available RF power sources with the parameters closest to the specs are at the frequencies of currently running proton linacs:

For example, ESS:

CPI: VKP-8352A/B: 352MHz, 2.8MW, 100kW

CPI:	VKP-8292A:	704 MHz, 1.5 MW, 74kW
CANON:	E37504	704MHz, 1.5MW, 74kW, 3.5ms, 14 Hz
Thales:	2182A	704 MHz, 1.6 MW

RF station lavouts overall

EUROPEAN SPALLATION SOURCE

Stub Concept

Footprint of 8 RF power sources: 15m x 12m

> RF: 8x1.5MW 15m x 12m

Muon cooling demonstrator layout

klyst

ron

Muon cooling demonstrator layout nominal gradient

	Protons	RF for collimation: Ma	ax 20MV/m	
	alala,	RF for 16 cavities 15m x 12m x 2	RF for cooling: Max. gradient 30 MV/m	Big building:
			180m	→ (surface)
30m			RF for 120 cavities at ~30 MV/m 15m x 12m x 5 x 6 = 30m x 180m	30m x 200m Height: 8-10 m Large number of very long waveguides 100m surface +50m shaft ~15% losses

Some reduction of the size of the modulators due to shorter pulse and lower rep. rate is possible.

- Pulse compressors
- Higher peak power RF sources
- Feeding several cavities from one source

Muon cooling demonstrator layout High peak power klystron: 24 MW

High power L-band Multi Beam Klystrons (MBK). Commercial tubes.

Frequency: **1.0 GHz** Peak RF power: 20 MW Efficiency: 70% Frequency: **1.3 GHz** Peak RF power: 10 MW Efficiency: 65%

Two 20MW MBK CLIC L-band klystron prototypes tested in industry.

po [MW]

Output Power

Eff.= 70.5 % uP= 0.47 μAxV⁻ ^{3/2}/beam

Gain = 53.9 dB

F=	999,5 MHz
P max =	20.8 MW
PL =	150 µsec
V=	146.5 kV
l=	191 A
Eff. =	73.5 %
uP=	0.341 µAxV⁻
^{3/2} /beam	
Gain =	51.5 dB

- Strong beam interception in the output cavity.
- Voltage-Efficiency curve does not show saturation
- Unbalanced power split between the two ports.

\gg Scaling the Canon tube to 0.7GHz, 24MW and 30 μ sec.

MInternational UON Collider Collaboration

ollaboration	Mu-tube, 0.7 GHz 6 beams MBK			
F=	999,5 MHz	F= 700 MHz		
P max=	20.2 MW	P max= 24 MW		
Τ=	150 usec	T = 30 µsec		
V=	159.4 kV	V= 171 kV		
I total =	180 A	I total = 200 A		
Eff.=	70.5 %	Eff.= 70.0 %		
uP=	0.47 µAxV ^{-3/2} /beam	uP= 0.47 μAxV ^{-3/2} /beam		
Gain =	53.9 dB	Gain = 53.9 dB		
P average	(50Hz)= <mark>150kW</mark>	P _{average} (5Hz) = 3.6kW		

Scaling Procedures and Post-Optimization for the Design of High-Efficiency Klystrons

To our experience such a scaling is a low risk development:

- For the fixed micro perveance, the tube length is proportional to the frequency
- Lower cathode current density (55%) and increased life time.
- Much lower average power (simpler collector)
- Marginal (~10%) increase of the modulator voltage and current.

Igor Syratchev

Cost and schedule:

- The CLIC tube prototypes were designed/built about 10 years ago; Canon: iiiii and Thales : iiiiii. Mu-tube cost will be within this range, as the companies shall do it not from scratch, but could scale it from exiting ones. Though, today there is no market for such devices, thus the cost of 'unique' prototype could be even higher.
- Similar to the CLIC tubes, it will take about 24 month to design, built and test the first Mu-tube prototype. Additional budget will be needed for the testing infrastructure (like RF loads etc.).

Possible staging scenarios

Back up

Conceptual layout

Rui Ximenes 2nd Community meeting

MUC Demonstrator VERY Conceptual layout → To be taken with a "grain of salt"

CERN TT10 branch

Collimation Chris Rogers

Muon Cooling channel **Chris Rogers**

- Collimation system requirement
 - Emittance $\sim 0.5 1$ mm transverse
 - Emittance $\sim 2 4$ mm longitudinal (650 MHz RF)
- Matching (not studied yet)

One of the 4 types: B5 – B8, still to be defined

Stage	Cell length [m]	Total length [m]	rf frequency [MHz]	rf gradient [MV/m]	rf #	rf length [cm]	Coil tilt [deg]	Pipe radius [cm]	Dispersion [cm]	Wedge angle [deg]
A1	2.000	132.00	325	22.0	6	25.50	3.1	30.0	10.7	39
A2	1.320	171.60	325	22.0	4	25.00	1.8	25.0	6.8	44
A3	1.000	107.00	650	28.0	5	13.49	1.6	19.0	4.2	100
A4	0.800	70.40	650	28.0	4	13.49	0.7	13.2	1.9	110
B1	2.750	55.00	325	19.0	6	25.00	0.9	28.0	5.2	120
B2	2.000	64.00	325	19.5	5	24.00	1.3	24.0	5.0	117
B3	1.500	81.00	325	21.0	4	24.00	1.1	18.0	4.6	113
R4	1.270	63 50	325	22.5	3	24.00	11	14.0	4.0	124
B5	0.806	73.35	650	27.0	4	12.00	0.7	9.0	1.4	61
B6	0.806	62.06	650	28.5	4	12.00	0.7	7.2	1.2	90
B7	0.806	40.30	650	26.0	4	12.00	0.8	4.9	1.1	90
B8	0.806	49.16	650	28.0	4	10.50	0.6	4.5	0.6	120

40

30 (cm)

20 9

10

0.8

Cooling channel concept

EUROPEAN SPALLATION SOURCE **ESS RF Systems** RF station layouts (2) two klystrons per modulator Dave McGinnis **ESS Klystron Modulator RF Group Leader** Workshop 24-April-2012 **ESS** Accelerator Division EUROPEAN Two Klystrons per Modulator SPALLATION SOURCE modulator 8000 0m klystron klystron A SYLAN AND AND AND cavity cavity

Muon cooling demonstrator layout lower gradient: 20 MV/m

to shorter pulse and lower rep. rate is possible.

Muon cooling demonstrator layout lower shorter cooling channel

RF for 16 cavities

15m x 12m x 2

16m

RF for cooling: 2x shorter cooling channel

RF for **72** cavities at \sim 30 MV/m 15m x 2 x 12m x 9 = 30m x **108m**

108m

Big building: (surface ?) 30m x **120m** Height: 8-10 m

Very long waveguides **50m** surface +50m shaft ?

Some reduction of the size of the modulators due to shorter pulse and lower rep. rate is possible.

Muon cooling demonstrator layout RF pulse compression: x2

RF for 144 cavities at ~30 MV/m 15m x 2 x 12m x 9 = 30m x 108m

144 RF pulse compressors with power gain factor 2

108m

Big building: (surface ?) 30m x **120m** Height: 8-10 m

Very long waveguides **50m** surface +50m shaft ?

See more details here S. Arsenyev, MC RF WG meeting 31st Aug. 2021: <u>Diapositive 1 (cern.ch)</u> Some additional space is needed 2mx2m in the tunnel

PC2

modulator

klystron

G

cavity

Muon cooling demonstrator layout RF pulse compression: x4

RF for cooling: Max. gradient 30 MV/m

RF for 144 cavities at ~30 MV/m 30m x 54m
72 RF pulse compressors with power gain factor 4

54m

32m

Big building: (surface ?) 30m x **60m** Height: 8-10 m

Very long waveguides **30m** surface +50m shaft ?

Muon cooling demonstrator layout High peak power klystron: 12 MW

New ideas for CLIC 1GHz klystron

High Efficiency 24 MW, 1 GHz, CLIC TS MBK performance summary (PIC CTS/3D)

Novel design Two-stage (TS) multi beam klystron (MBK)

CLIC project meeting 15 June 2021 Igor Syratchev (cern.ch)

TABLE I. DESIGN AND SIMULATED PARAMETERS (CST/3D) OF THE CLIC TS MBK AND CANON MBK E3750 CATALOGUE DATA

Parameter	TS MBK	E37503	Unit
Operating frequency	1000	1000	MHz
Voltage at the 1st stage	25	160	kV
Voltage at the 2nd stage	140]	
Total beam current	212	180	Α
Number of beamlets	30	6	
Number of cavities	6	6	
Perveance at the 1st stage	1.77	0.47	µA/V ^{3/2}
Perveance at the 2nd stage	0.133	1	
Output RF power	24.1	20	MW
Saturated power gain	52	54	dB
Saturated efficiency	82	70	%
Length of RF circuit	900	1500	mm
90			30
80	TS M	BK _	25
70			20
0	1		
60			15
60 50 E37503			15

CLIC L-band klystron modulator - ETH

Max voltage	180 kV (160A)
Max current	190 A (@ 150 kV)
Flat-top	140 µs
Rise/fall-time	3 µs
Max rep rate	50 Hz

- Turnkey system (no CERN electronics can manage this)
- Situation: worked on dummy load, since more than 2 years trying to restart-it – electronics issues – difficulties due to turnkey & pandemic influence on components availability
- Requires lot of resources no spares re use for muons will be extremely demanding in resources (M&P)
- Second unit was foreseen in CLIC project (simplified version with CERN electronics and degraded flat-top performances) – funds not available anymore...

CLIC L-band klystron modulator – second (CERN based)

• Second unit intended to verify the design of the pulse transformer and to have a s

MS sent out in 2018 (industry interested for this simplified

- Simpler version with only:
 - A charger (120 kW, 20 kV) → Already bought (110 kCHF)!
 - A capacitor bank
 - Power electronics (mainly a switch)
 - A pulse transformer → Studies carried & RN internal design), partner company interested

Specs for two modulators modulator

	CLIC tube	Mu-
Max voltage	170 kV 171kV	
Max current	180 A A	200
Pulse length	150 µs µs	30
Flat-top	2-5%	NA

- Projected cost (CERN based) is iiiii . Construction time is about two years.
- Down-sized for the Mu-tube (less average power, increased flat top stability and rise/fall), will make the project cheaper and less time consuming. All these parameters relaxations can be accepted as the cavities will integrate all the imperfection in RF signal amplitude, provided simple enough RF phase feed-back control.