

Possible US demonstrator implementation

Diktys Stratakis (Fermilab) IMCC Annual Meeting June 21, 2023

Outline

 This talk will cover possibilities for proton driver tests, target tests, rf stand and cooling demonstrator in the US

Past US experience: NC RF in B-fields tests

- Muon Test Area (MTA): a dedicated facility at Fermilab for muon accelerator components testing – RF and absorbers
- Experimental NCRF R&D conducted at 805 MHz cavities for vacuum and high pressure cavities, and MICE prototype cavity at 201 MHz
- High pressure cavity reached 60 MV/m without B dependence
- Modular cavity reached 50 MV/m in 3 Tesla magnetic field.
- MICE cavity with Be windows and module with vacuum protection reached to the design goals.

Past US experience: cooling channel elements

- Many elements for a cooling channel was fabricated in the US
- As a result significant experience gained **and still exists**!

Fermilab ACE program

- In the next decade, LBNF plans to use protons which will operate at 1.2 MW to start and will be upgradeable to 2.4 MW
- ACE aims a Main Injector upgrade to deliver 1.2+ MW by 2032
 - Will include a rigorous target R&D program for 2+ MW beam powers
 - This program is synergistic with MuC R&D

Target R&D possibilities at Fermilab

• Fermilab ACE plan includes a intensified program for testing targets

Target materials R&D on critical path to 2+ MW target

- 1. Identify candidate materials
- High-energy proton irradiation of material specimens to reach expected radiation damage
- Pulsed-beam experiments of irradiated specimens to duplicate loading conditions of beam interactions
- 4. Non-beam PIE (Post-Irradiation Examination) of specimens
 - Material properties
 - Microscopic structural changes
 - High-cycle fatigue testing

Five-year cycle needs to start ASAP

ACE vision as presented to the P5 panel

- Secondary beam study:
 - Angular distribution
 - Target Z dependence
 - Energy dependence
 - Hadronic shower

Emphatic spectrometer at Fermilab

Fermilab Muon Campus

- Designed to provide beam for the Muon g-2 and Mu2e experiments
 - Muon g-2 experiment will end this summer

Muon Campus capabilities

Muon campus experience with cooling

 Proof-of-principle for emittance-exchange carried out. Resulted to MORE muons for the Muon g-2 Experiment

MuC NC RF test-stand

- SLAC Next Linear Collider Test Accelerator (NLCTA)
 - NLCTA has a bunker with L/S/X-band high power rf sources.

L band cavity in a 0.5 T field magnet @ NLCTA

MuC proton driver tests

- Goal: carry a proton compression R&D program in existing facilities
- IOTA/FAST @ Fermilab
 - Intense space-charge 2.5 MeV p beam, may have unique opportunities for expanded diagnostics or lattice modification studies
 - Aid our understanding on how spacecharge can affect the process
- SNS @ Oak Ridge National Laboratory
 - 1.8 MW facility with painted H- injection of 1-1.3 GeV beam
 - Allows testing of laser stripping

