

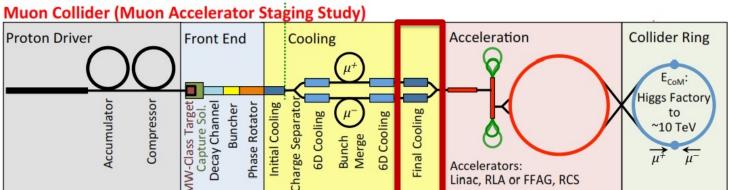
IJCLab Orsay, France 19-22 June 2023

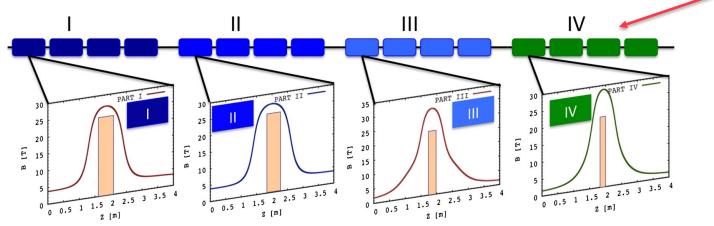
Technology options for the final cooling solenoids

B. Bordini, C. Accettura, A. Bertarelli, L. Bottura,A. Dudarev, A. Kolehmainen, T. Mulder,B. A. Verweij, M. Wozniak

2nd IMCC Annual Meeting

1st Question to Review Panel



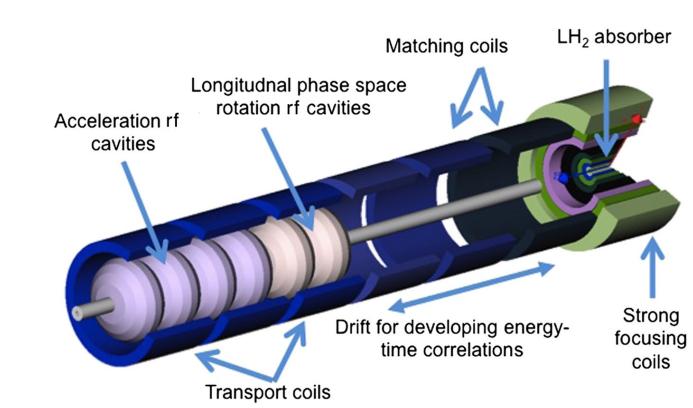

• Are all critical magnet systems identified, including the true performance drivers, with no missing area?

The Final Cooling Channel

A layout schematic of 16 cells of the final cooling channel defined by the MAP study (Sayed et al. Phys. Rev. ST Accel. Beams **18**, 091001). The coloured boxes in the top represent the cooling cells. The bottom figures show a sample of the on-axis field of the strong focusing solenoid; the shaded areas show the corresponding absorbers lengths.

- The **final cooling solenoids** are part of the the **final cooling channel**, which is constituted by **several cells**
 - 16 were proposed by the MAP study
 - 14 are presently considered by IMCC

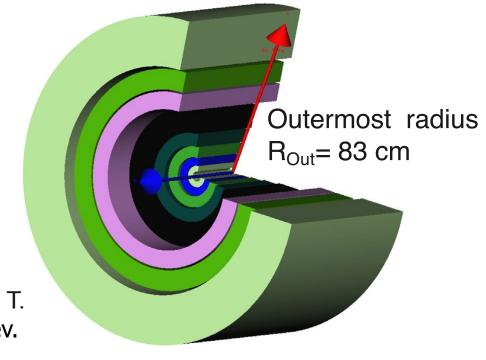
4 σ beam dimensions and kinetic energies Courtesy of Elena Fol


Cell	Aperture [mm]	LH [cm]	E_{kin} , start [MeV]	E_{kin} , exit [MeV]
1	25	74	67	36
2	22	64	70	46
3	21	59	68	43
4	21	62	62	36
5	21	55	66	44
6	19	56	58	33
7	19	53	55	31
8	19	44	43	19
9	20	40	41	19
10	19	38	32	5
11	24	23	32	14
12	14	22	29	7
13	18	18	26	4
14	18	17	23	4

The Ionizing Cooling Cell

- Each cell starts with a strong focusing final cooling solenoid enclosing the LH2 absorber
- The final cooling solenoid is followed by matching coils, energy-phase rotation rf cavities, and acceleration rf cavities
- The final cooling solenoids have been identified as the critical components the final cooling section

Schematic of the elements of one ionization cooling cell, Sayed et al. Phys. Rev. ST Accel. Beams **18**, 091001


The Final Cooling Solenoid

Design proposed by MAP

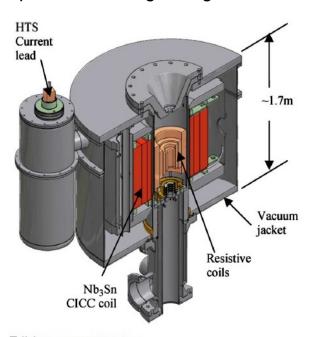
Magnet length [m]	Inner radius [m]	Coil thickness [m]	Current density I/A [A/mm ²]
0.317	0.025	0.029	164.26
0.337	0.055	0.041	142.43
0.375	0.098	0.056	125.88
0.433	0.157	0.067	119.07
0.503	0.228	0.120	85.99
0.869	0.355	0.089	39.60
0.868	0.454	0.104	44.30
0.992	0.575	0.252	38.60

A set of eight superconducting coaxial coils providing a peak field of 50 T. The inner radius of the smallest coils is 0.025 m. Sayed et al. Phys. Rev. ST Accel. Beams **18**, 091001

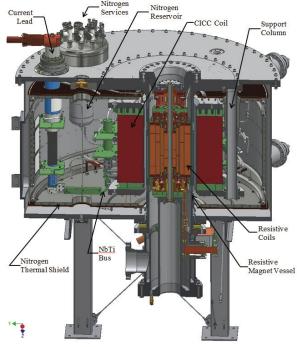
- Main specs used for the CERN conceptual design
 - B ≥ 40 T, aperture φ ≥ 50 mm, field homogeneity 1 % over ~ 0.5 m
 - Energizing time 6 hrs and persistency 0.1 Units/s

2nd Question to to Review Panel

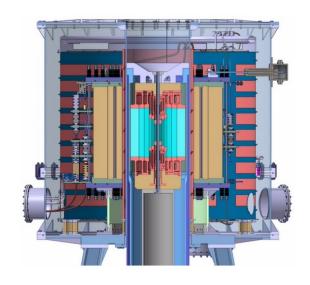
- Is the evaluation of technology options complete and appropriate?
- Specifically, are there viable options that have not been considered, or not evaluated correctly?



State of the Art Ultra High Field Hybrid (Solenoid Superconducting + Resistive)


https://nationalmaglab.org/user-facilities/dc-field/magnets-instruments/

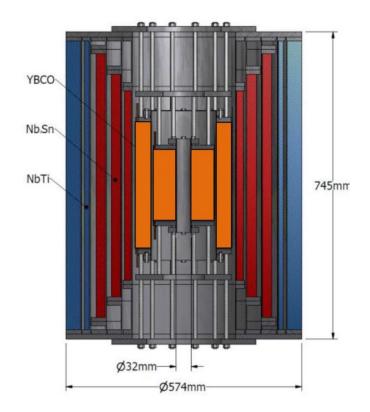
http://english.hmfl.cas.cn/uf/ms/202202/t20220224_301451.html

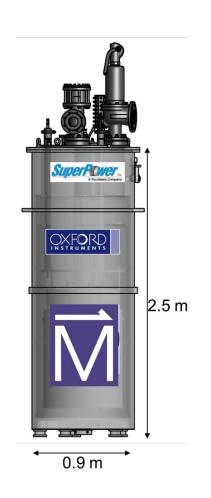


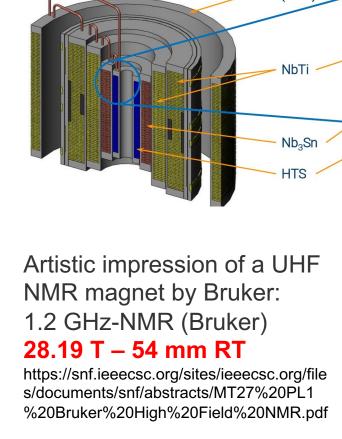
Tallahassee magnet system.

Cross section of 45 T, 32 mm
NHFML user facility solenoid
Hybrid Magnet 33.5 T from
resistive insert, 11.5 T by
superconducting outsert
30 MW power comsumption

Cross section of 36 T, 48 mm
NHFML user facility (NMR) solenoid
Hybrid Magnet 23 T from resistive
insert, 13 T by superconducting
Nb3Sn CICC outsert
14 MW power comsumption


Cross section of 40*/37 T, 32/50 mm
CHMFL user facility solenoid
Hybrid Magnet 29/26 T from resistive insert, 11 T by superconducting
Nb3Sn CICC outsert
20 MW power comsumption



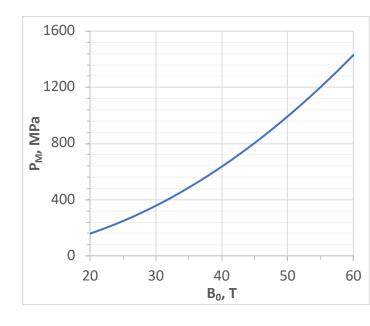

State of the Art Ultra High Field Hybrid Superconducting Solenoids

Cross section of **32 T** (15 T LTS, 17 T two ReBCO double pancake coils), **32 mm** user facility solenoid https://nationalmaglab.org/user-facilities/dc-field/magnets-instruments/

Active Shielding

(NbTi)

0



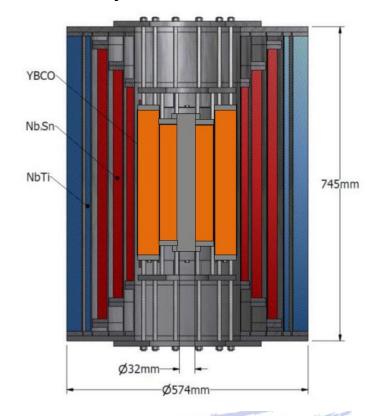
Why state of the art Ultra High Field UHF Hybrid solenoids are so big?

- In a solenoid, the **hoop stresses** are **proportional** to the **Magnetic Pressure** ($P_M \equiv \frac{B_0^2}{2\mu_0}$)
 - For not supported infinitely long solid coil with a uniform current density, the maximum hoop stress is
 - \sim **2.2** P_M when $\alpha \equiv R_{ext}/R_{int} = 1.85$
 - ~1.4 P_M when $\alpha \gg 1$
 - For not supported infinitely long coil with a uniform current density and windings not mechanically interacting radially, the maximum hoop stress is
 - \sim **2.2 P**_M when $\alpha = 1.85$
 - \sim **0.9 P_M** when $\alpha = 4$
 - \sim **0.5** P_M when $\alpha \gg 1$

Because P_M is enormous and to limit the stresses one natural solution is to dilute the current and decouple as much as possible the windings

Yield strength of

- 1. annealed oxygen free copper: 30-80 MPa (grain size 50-3 µm)
- 2. austenitic steel 316LN SS: 270 MPa at RT (830 MPa at 4 K)



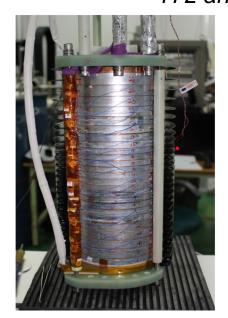
UHF Superconducting Solenoids Next step for nested coils

- The design of superconducting solenoid by using nested insulated coils proved to be successful in producing ~30 T magnets with apertures up to 5 cm
 - This concept will be further investigated and perfected by ongoing projects that try to optimize it and to reach larger field values
- While this design is suitable for user facilities, it is not clear it could satisfy the needs of the final cooling solenoids

Cartoon design of 40 T, 32 mm user facility solenoid (planned) – Courtesy of Ian Dixon NHMFL

UHF Superconducting Solenoids Nested Coils & Final Cooling Solenoid

- The nested coil design presents some drawbacks that might be problematic for the final cooling solenoids
 - Diluting the current over large coil cross section (low J)
 - requires a larger amount of superconductor (cost): the current lines are not compacted around the magnet aperture
 - Implies a larger magnetic energy stocked, which makes the magnet protection more complex, and larger sizes
 - The magnet protection, which is critical in magnets using HTS, is rather complex because of the interactions between the different nested coils
 - The presence of several coils and components could make the construction more difficult and the magnet system less reliable
- And if we go to the **opposite direction? High uniform J** (>400 A/mm^2) in a single coil (\rightarrow low α)? So far, we said that low α makes explode the hoop stress, but...



UHF Superconducting Solenoids Single coil, High-J_e

- This concept was proved successful for a Not Insulated ReBCO winding that reached 26.4 T with a maximum hoop stress of 286 MPa
- But we need much larger fields (>40 T) and the hoop stress is proportional to B₀²
- Plus, at larger fields, tensile radial stress appears, which is not acceptable for ReBCO tapes, what can we do?
 - Support externally the coil with stiff rings that also apply a precompression to the coil

Sunam NI one-body ReBCO magnet 26.4 T in 35 mm, J central pancake 404 A mm⁻² (26.4 T HTS multi-width) overall diameter and height: 172 and 327 mm

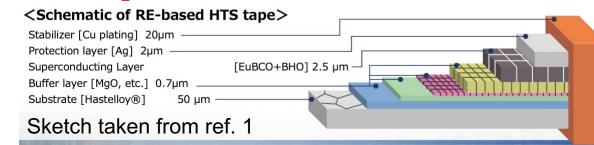
S. Yoon et al. Supercond. Sci. Technol. 29 (2016) 04LT04

Technologies

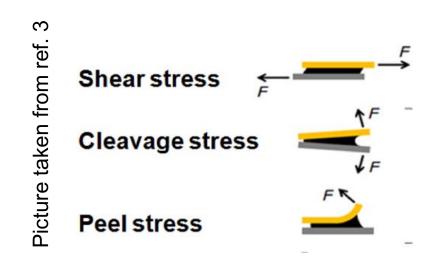
Technology	Pro's	Con's
Hybrid SC (LTS) + resistive Insulated Nested Coils	Known technology (TRL 9)	Large dimension and mass Electric power consumption
All SC, LTS + HTS Insulated Nested Coils	Known design principles Synergy with other fields of science application Can profit from development by others (e.g. NHMFL)	Large dimension and mass Developmental technology (TRL 6/7)
All SC, HTS Insulated Nested Coils	More compact than LTS/HTS Allows for operation at higher temperature	R&D at low readiness (TRL 4/5)
All SC, HTS Non/Metal-insulated Nested Coils	Same as previous case (row) + even more compact, with an increased magnet stability and reduced risk of burning the magnet. Potential of reaching even larger fields with respect to the single coil solution (next row). Synergies with other fields of science and societal applications. Can profit from development by others (e.g. NHMFL)	R&D at low readiness (TRL 3/4/5) Ramping time, field stability need, and electro-mechanical behavior during fast transients to be demonstrated
All SC, HTS Non/Metal-insulated Single Coil (No Nested)	Same as previous case (but the max. field potential) + even more compact, with a lower risk of burning the magnet, simpler to protect, reduced number of coils (one per pancake) and joints. Significant cost/volume/weight reduction for 20-40 T solenoids.	Same as previous option (row) including TRLs + mechanical precompression (B>30 T) need to be demonstrated

• We chose the all-HTS NI/MI Single Coil (pre-compressed) option because of its very high potential (for future particle accelerator and other societal applications, see slides 24-25) and because nobody is pursuing it (as far as we know)

3rd Question to to Review Panel


• Are the selection of options to be studied in detail, and the ranking of priorities, justified and appropriate for the objectives of a pre-conceptual report, due by end 2025?

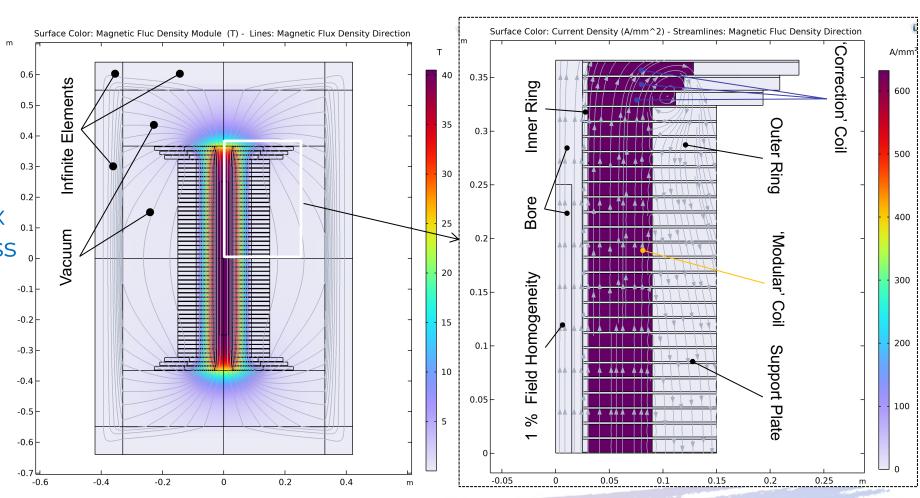
Electro-mechanical Properties of the ReBCO tape*


- For a **12 mm wide tape**, we can assume critical current I_c values of this level
 - Measured² at 4.2 K: I_c (B₁=15 T) ~ 1.8 kA; I_c (B₁=15 T) ~ 5.4 kA
 - Estimated at **4.2 K**: I_c (B₁=50 T) ~ 300 A; I_c (B₁=**50 T)** > **1000 A**

¹https://www.fujikura.co.jp/eng/products/newbusiness/superconductors/01/superconductor.pdf ² Shinji Fujita, Satoshi Awaji et al. IEEE TAS, VOL. 29, NO. 5, AUGUST 2019

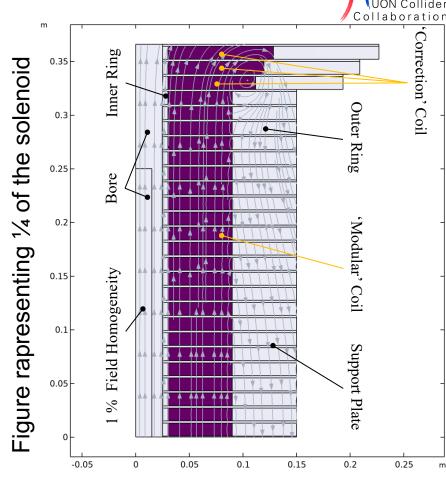
³ Hideaki Maeda and Yoshinori Yanagisawa IEEE TAS, VOL. 24, NO. 3, JUNE 2014

- Mechanical stresses producing irreversible I_c reduction
 - Tensile longitudinal strain > 0.4 %¹ (600-800 MPa depending on the Hastelloy fraction)
 - Compressive stress in thickness direction > 400 MPa¹
 - Compressive stress in width direction > 100 MPa¹
 - **Tensile** stress in **thickness** direction: 10-100 MPa³
 - Shear stress > 19 MPa³
 - Cleavage/Peel stress³ (tensile at tape extremities)<1 MPa³

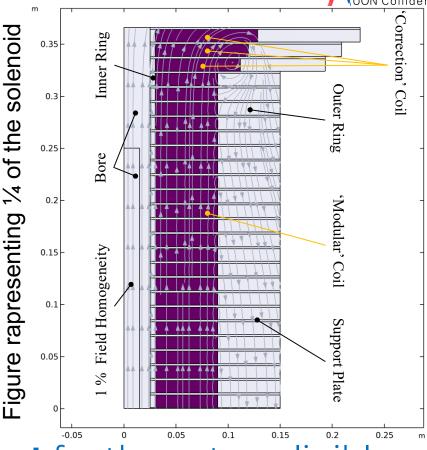

*In appendix the conductor specifications produced for the Muon Collider Project

40+ T Conceptual design

- 46 identical 'modular' and 6 'correction' pancakes
- 'modular' pancake:
 - 6 cm (6-8) thick coil
 - **J_e 632 A mm⁻²** (>500)
 - 12 mm wide tape
 - Outer ring thickness x times (>1) coil thickness
 - Inner ring 5 mm thick
 - Support Plate 2 mm (less?) thick
 - Bore aperture 50 mm
 - Bore Field = 40 T


Principles Guiding the study 1/2

- $J_e > 500 \text{ A mm}^{-2}$
 - limit costs and dimensions
- Modular Single coil pancakes (not nested coils)
 - simplify the design, the magnet system and the protection
- Non/metal insulated coils
 - protection, mechanical robustness, high J_e
- Avoid tensile radial stresses and limit the hoop strain to values lower than 0.4 %
 - minimize the risk of I_c degradation



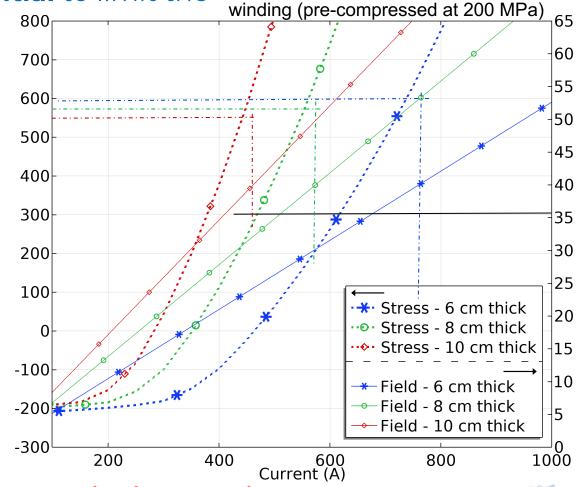
Principles Guiding the study 2/2

- Maintain the magnetic field lines practically parallel to the tapes in the 'modular' coils
 - minimize axial Lorentz forces and maximize I_c
- Intercept axial Lorentz forces between pancakes via support plates
 - minimize the pancakes mechanical interactions, avoid the accumulation of axial forces
- Use as wide as possible tapes, 12 mm
 - to limit the number of pancakes

- Robust design for the 'correction' coils, to account for the not negligible axial forces experience (significant radial fields) and the conductor magnetization (tape striations?)
 - protection, mechanical robustness

Mechanical Analysis I * main findings

A precompression of about 200 MPa is essential to limit the


conductor hoop stress to acceptable values

 Even with a 200 MPa precompression, the coil thickness must be smaller than ~8 cm to avoid radial tensile stress

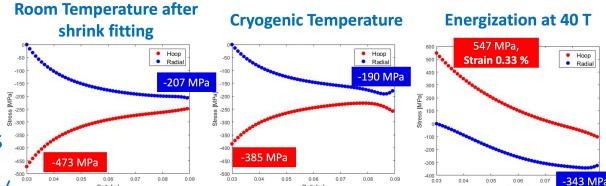
 The maximum field achievable with this design (based on pancakes made of a single coil) is about 40 T

 Most of the axial Lorentz forces act on the last 2 pancakes of each extremity

- about 3 and 1.5 MN → on average ~30 and 15
 MPa applied on the respective support plates
- the axial force acting on the 4th coil is more than one order of magnitude lower

Max Hoop stress and load line for different thickness of the modular coil

*Assumption in appendix



Mechanical Analysis II * Case studies and main findings

- 200 MPa precompression feasible via shrink fitting**
- Plots refer to Case 1

- Calculated stresses and strains are well below the limits of the superconductor
- The max hoop strain strongly depends on the thickness of the plates between modular coils
- The tape Copper fraction does not significantly impact the results of the linear analysis
 - Cu yielding needs to be assessed (work in progress)

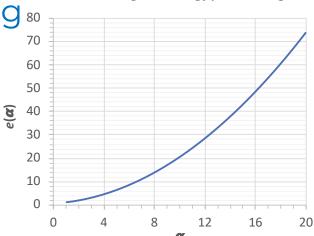
Courtesy of C. Accettura see her talk on Thursday!

* Analysis Assumptions and **Alternative design to shrink fitting in Appendix

Stress and strain in the 'modular coils' after shrink fitting at Room Temperature, after cooldown at 4.2 K and; at full energization (40 T)

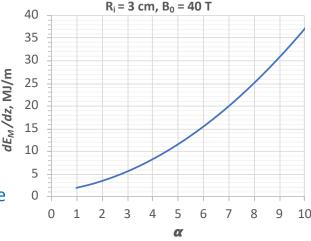
				Stress (M	IPa) at RT	Stress (MPa	a) at 4.2 K	Stress (MF	a) and Strai	n (%) at 40 T		
Case	Copper in the tape, (%)	Distance between 'modular' coils (mm)	$J_{\rm e}$ (A/mm ²)	Min Hoop	Min Radial	Min Hoop	Min Radial	Max Hoop Stress	Min Radial Stress	Max Hoop Strain		
1	40	2	632	-473	-207	-385	-190	547	-343	0.33		
2	20	2	032	-484	-211	-413	-193	529	-352	0.3		
3	40	0	540	-473	-207	-385	-190	412	-320	0.25		
4	20	U	542	542	542	-484	-211	-413	-193	393	-330	0.22

Protection Studies Magnetic Energy


- The magnetic energy per meter length of an infinitely long solenoid with a uniform current is $dE_M/dz = \pi R_i P_M e(\alpha)$
 - Where e(1) = 1 and $e(\alpha \gg 1) \sim \alpha^2/6$
 - For $\alpha \gg 1$, $dE_M/dz \propto R_i B_0^2 \alpha^2$
 - Assuming $R_i = 3 cm$ and $B_0 = 40 T$
 - $\alpha = 1$ (all the current in an **infinitesimal layer**), $dE_M/dz = 1.8 \, MJm^{-1}$
 - $R_o = 9 \ cm$ (proposed design) $\rightarrow \alpha = 3$, $dE_M/dz = 5.4 \ MJm^{-1}$
 - $R_o = 27 \ cm \rightarrow \alpha = 9$, $dE_M/dz = 31 \ MJm^{-1}$

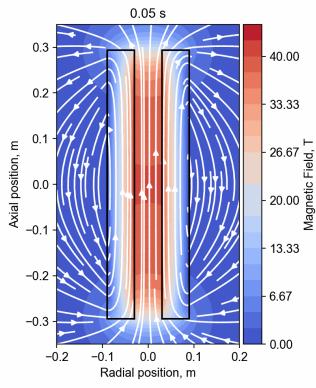
	700
S.	0
ter	2
ne	2
ā	-
Ja	7

	Current in the tape	760 A
	Current density in the tape	632 A/mm ²
	Magnetic Field in the solenoid	40 T
-	Pancake Inductance ¹	0.27 H
	Magnetic Energy x Pancake	77 kJ
	Tape length x coil	226 m
	Energy density in the coil ²	300 J/cm ³


- 6 cm thick 'modular' pancakes (600 turns)
- 12 mm wide tape
- 60 mm winding inner diameter (50 mm bore aperture)
- 2 mm distance between modular pancakes

Assuming a single tape conductor; in the case of a double tape conductor, the inductance would be 4 times smaller
 Tape enthalpy variation from 4.2 K to 200 K > 350 J/cm³

Normalized Magnetic Energy per unit lenght


Protection Studies Fast Transients

Detailed analysis of fast transients in Not/Metal Insulated coils are

essential for their protection (and operation)

- CERN started to work on it
 - Several experts on quench dynamics and SC magnets protection
 - In house software (STEAM) validated on numerous LTS magnet tests/experiments
 - Development of new tools dedicated to the transient analysis on ReBCO not/metal insulated coils
 - Availability of and competences on FEM software
 (Comsol Multiphysics and GetDP) running on CERN clusters

Simulation and Animation courtesy of Tim Mulder

Operation

¹ S. Yoon et al. Supercond. Sci.

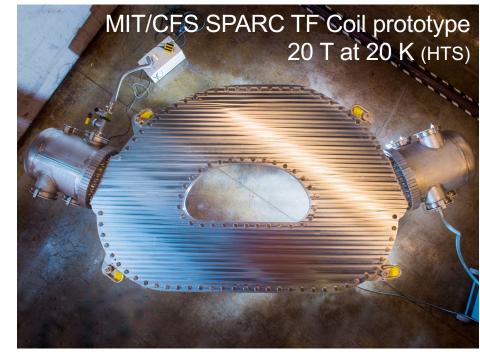
Technol. 29 (2016) 04LT04

- The required **energization time**, **6 hrs**, seems achievable for Not/Metal Insulated coils
 - the 26.4 T Sunam NI coil was energized in about 14 hrs¹, despite the very low surface contact resistance, 9.6 $\mu\Omega$ cm²
 - In previous smaller small-scale REBCO NI test coils, the same group found a surface contact resistance about 7 times larger1
- The surface contact resistance can be increased by reducing the Cu content in the conductor, especially on the tape edges, and/or interposing a resistive metal tape in between the turns, or ...
- Studies for defining the proper surface contact resistance and how to achieve it consistently, also considering the magnet protection and the required field persistency, are on going
 - To meet operation requirements, other solutions, as correction coils or a power supply with active feed-back, are also considered

Main Conclusions on the design work

- The conductor critical current seems not to be a limiting factor for a all ReBCO 40-50 T solenoid with a 50 mm bore
- The proposed conceptual design shows the potential for developing a compact 40 T final cooling solenoid
- Two main criticalities have been identified:
 - The electro-mechanical design → stresses on the conductor are very large
 - The electrodynamics and protection of the magnet → complex transients to control
- CERN INFN, CEA, CNRS, PSI, UniGE, SOTON, UniTwente started to tackle these criticalities via modeling and experimental activities*

*More on experimental activities in appendix


Relevance to Science and Society of not/metal insulated ReBCO coils 1/2

 The potential of a large coils' cost/mass/volume reduction and of operating at 20 K, makes this technology extremely

attractable for:

- The Sustainability of medium/large particle accelerators
- Compact/Modular Fusion Reactor based on magnetic confinement
- High Field Science (see previous slides)

Relevance to Science and Society of not/metal insulated ReBCO coils 2/2

- The development of this technology could also strongly impact
 - Nuclear Magnetic Resonance (see previous slides)
 - higher fields to improve resolution of the resonance spectra and the acquisition speed
 - Magnetic Resonance Imaging
 - Large bore (800 mm), high-field (11.7 T) and high-homogeneity solenoids, in persistent- or quasi-persistent mode. Nb-Ti technology is dominant but there is strong interest for HTS, especially for cryo-free operation.
 - Wind turbine generators
 - Compact generator essential ingredient for large turbines, the trend is now for >> 1 MW turbines

UHF MRI (11.7 T) developed by CEA and manufactured by ASG Superconductors

(left) The 3.6 MW EcoSwing HTS generator (blue, 4 m diameter) next to its conventional counterpart with the same power rating (red, 5.4 m diameter), prior to (right) its lift onto the turbine

https://www.utwente.nl/en/tnw/ems/research/sust/EcoSwing/

4th Question to to Review Panel

Is the work program proposed matching the above ambitions?

Overall Work Plan & Resources

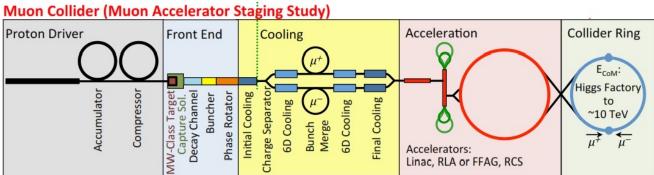
- A draft version of the overall work plan for the mmWG and EU MuCol WP7 has been written (see document by LB/LQ/SF)
 - For the final cooling solenoid, a preliminary Risk and mitigation plan has been defined (see appendix)
- The final cooling solenoid effort can count on a large collaboration including well established institutes and universities
 - Institutes: CERN, INFN, CEA, CNRS, PSI
 - Universities: Geneva, Twente, Southampton
- A large number of enthusiastic young researcher strongly push the fast progresses of the project

Scheduling

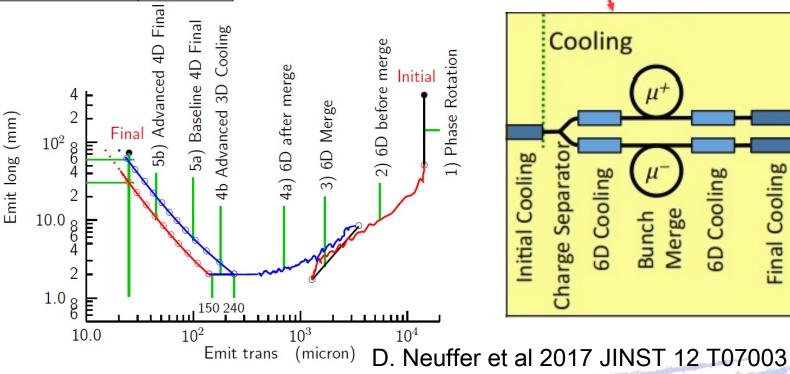
A preliminary Gantt chart has been defined

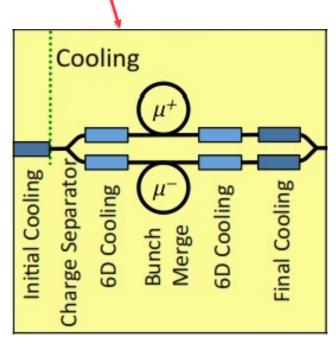
Autho	r: Siara Fabbri			Today:		15/6/2023			20	23			20	024			2	2025			2	026	
					_			Jan 1	Apr	Jul 1	Oct	Jan 1	Apr	Jul	Oct	Jan 1	Apr	Jul	Oct	Jan	Apr	Jul	Oct
TASK	OBJECTIVES (can be in Parallel)	COLLABORATORS	PROG	GRESS N	MONTHS	START E	END	s	s	s	s	м	М	М	Т	w	Т	Т	w	Т	w	w	Т
2.2 -	- Design and demonstrate UHF HTS solenoids using NI/PI technique for final cooling	Institutes: INFN, CERN, PSI, CEA, LNSMI, Utwente, U Persons: A. Dudarev, B. Bordini, T. Mulder, A. Berta Tang	•		S. Fabbri, L	. Bottura, Y.																	
1	Define performance specifications (beam physics), and initiate meetings with beam/shield/absorber/cryo/vacuum/ on these specs (First draft - 2023, final draft - 2025)	S. Fabbri, L. Bottura, M. Statera	0%	9.0	1-Jan-23	30-Sep-23																	
2	Define reference geometries and estimate material needs for technology R&D	M. Statera, L. Bottura	0%	4.0	1-Jan-23	30-Apr-23																	
3	CERN - Engineering design of final cooling solenoid, 40 T (or higher), 50 mm bore, 500 mm length, standalone (First concept 2023, Final Concept 2025)	A. Dudarev, B. Bordini, T. Mulder, A. Bertarelli, C. Accettura	0%	9.0	1-Jan-23	30-Sep-23																	
	CERN - R&D pancakes manufacturing and test at CERN, geometry and loading alternatives, resistance control, mechanical testing, powering test	A. Dudarev, B. Bordini, T. Mulder, A. Bertarelli, C. Accettura		36.0																			
	Design and tooling		0%	12.0	1-Jan-23	31-Dec-23																	
4	Mechanical tests		0%	18.0	1-Jan-24	31-Dec-24																	
	Manufacturing start		0%	18.0	1-Jun-24	1-Jun-25																	
	Testing		0%	24.0	1-Jan-25	31-Dec-26																	
5	INFN - R&D pancakes manufacturing and test at INFN, small coils having different configurations and characteristics (insulated, non-insulated, dimensions,). Proposal: Provide test windings for characterization and test at collaborators	M. Statera, S. Sorti		36.0																			
	Start construction		0%	12.0	1-Jul-23	1-Jul-24																	
	Start testing		0%	24.0	1-Jan-24	31-Dec-25																	
6	(SO'TON) – R&D pancakes manufacturing with insulation/potting technology as tested in EuCARD2 (timeline TBD)	Y. Tang																					
7	$Testing of small R\&D\ pancakes in\ background\ field\ (10T,100mmmaximum)\ at\ variable\ temperature\ in\ gaseous\ helium, for\ currents\ up\ to\ 1500\ A-first\ tests\ mid\ 2024$	Y. Tang	0%	12.0	1-Jun-23	30-Jun-24																	
8	PROPOSAL: PSI - R&D pancakes manufacturing and test at PSI. Share advances and make available small windings for characterization and test at collaborators	J. Kosse (PSI), B. Auchmann (PSI)																			-		
9	PROPOSAL: CEA/LNCMI – Testing of small R&D pancakes in background field (20 T, 120 mm maximum)	X. Chaud (LNCMI), L. Quettier (CEA)																	No.		- Jan		Fire Park

Thank You For the Attention



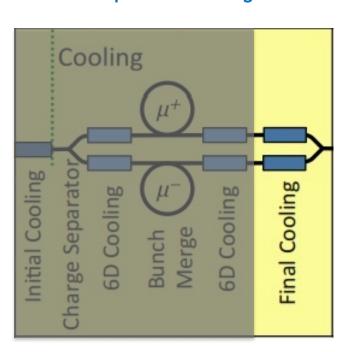
APPENDIX

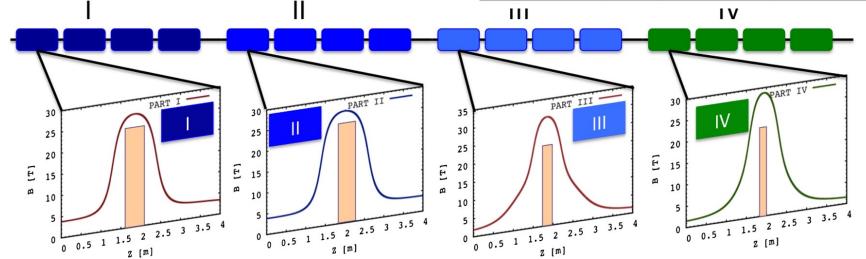

The Cooling System



The **final cooling solenoid** is part of the cooling system

The cooling system is designed to reduce the transversal emittance while **preserving** the longitudinal emittance


The Final Cooling Channel



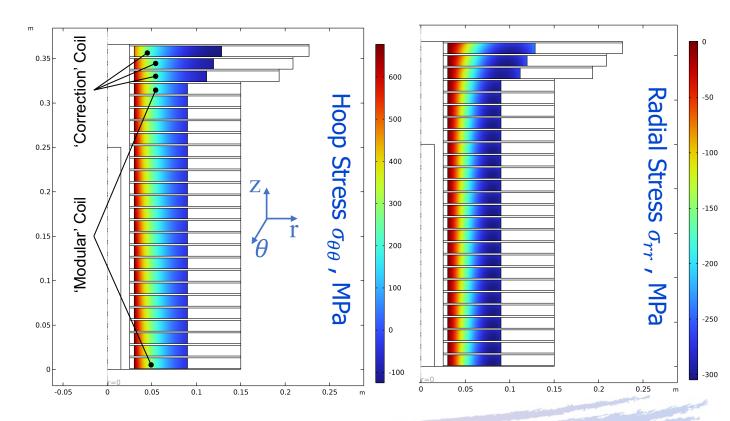
4 σ beam dimensions and kinetic energies Courtesy of Elena Fol

In particular, the final cooling solenoids are
part of the the final cooling channel , which is
constituted by several cells ; 16 were proposed
by the MAP study (see figure below) and 14
are presently considered by IMCC

	Cell	Aperture [mm]	LH [cm]	E_{kin} , start [MeV]	E_{kin} , exit [MeV]
	1	25	74	67	36
	2	22	64	70	46
	3	21	59	68	43
	4	21	62	62	36
	5	21	55	66	44
	6	19	56	58	33
	7	19	53	55	31
•	8	19	44	43	19
	9	20	40	41	19
	10	19	38	32	5
	11	24	23	32	14
	12	14	22	29	7
	13	18	18	26	4
	14	18	17	23	4

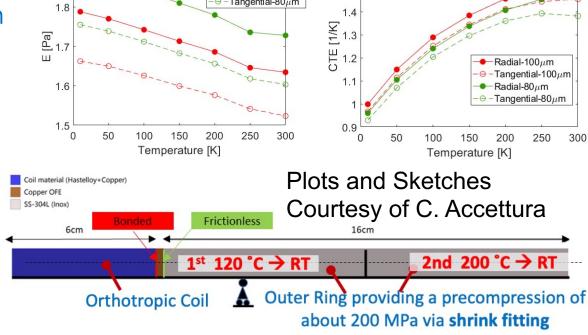
A layout schematic of 16 cells of the final cooling channel defined by the MAP study (Sayed et al. Phys. Rev. ST Accel. Beams **18**, 091001). The coloured boxes in the top represent the cooling stages. The bottom figures show a sample of the on-axis field of the strong focusing solenoid; the shaded areas show the corresponding absorbers lengths.

Technologies


		Collaboration
Technology	Pro's	Con's
Hybrid SC (LTS) + resistive Insulated Nested Coils	Known technology (TRL 9)	Large dimension and mass Electric power consumption
All SC, LTS + HTS Insulated Nested Coils	Known design principles Synergy with other fields of science application Can profit from development by others (e.g. NHMFL)	Large dimension and mass Developmental technology (TRL 6/7)
All SC, HTS Insulated Nested Coils	More compact than LTS/HTS Allows for operation at higher temperature	R&D at low readiness (TRL 4/5)
All SC, HTS Non/Metal-insulated Nested Coils	Same as previous case (row) + even more compact, with an increased magnet stability and reduced risk of burning the magnet. Potential of reaching even larger fields with respect to the single coil solution (next row). Synergies with other fields of science and societal applications. Can profit from development by others (e.g. NHMFL)	R&D at low readiness (TRL 3/4/5) Ramping time, field stability need, and electro-mechanical behavior during fast transients to be demonstrated
All SC, HTS Non/Metal-insulated Single Coil (No Nested)	Same as previous case (but the max. field potential) + even more compact, with a lower risk of burning the magnet, simpler to protect, reduced number of coils (one per pancake) and joints. Significant cost/volume/weight reduction for 20-40 T solenoids. Technology options for the final cooling solenoids—B. Bordini	Same as previous option (row) including TRLs + mechanical precompression (B>30 T) need to be demonstrated

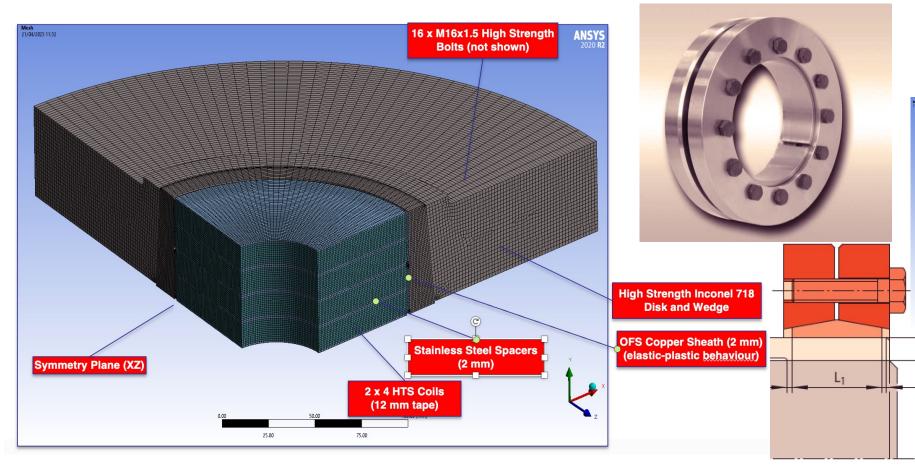
Mechanical Analysis I assumptions and analysis

• Main assumptions: fully elastic, Isotropic approximated Young Modulus (150 MPa); no thermal contraction; 200 MPa coil precompression; 100 μ m thick ReBCO tape with 50 μ m of Hastelloy and 40 μ m Cu



Mechanical Analysis II assumptions and type of simulations

- Main electromagnetic assumptions: uniform current density, infinite solenoid field distribution
 - representative of a 'modular' coil sufficiently far from the solenoid extremities in stationary conditions
- Main mechanical assumptions: fully elastic, orthotropic mechanical material properties
 - homogenized with different rule of mixtures depending on the considered property and direction


- Performed analysis
 - Mechanical ANSYS simulation to calculate the stress in a modular coil during
 - The 200 MPa precompression applied on the coil at room temperature via shrink fitting by two preheated concentrical rings
 - The cool down of the assemble from RT to 4.2 K
 - The energization at 4.2 K of the pre-compressed coil

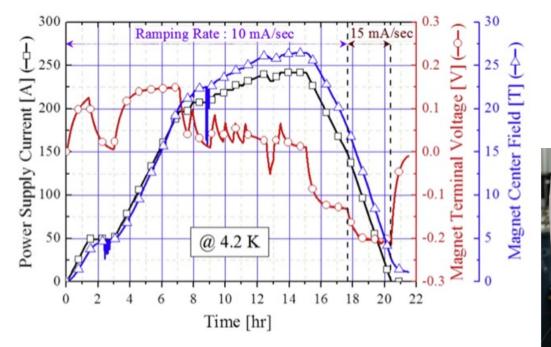
Precompression alternative design to shrink fitting

- A Alternative concept is based on a pair of adjustable shrink-discs with conical surfaces
- Thicker coils packs can be assembled (up to 8 x 12 mm coils)

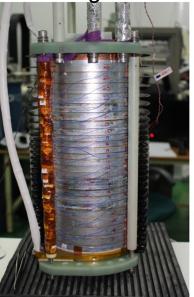
Main Dimensions

- Coil ID 60 mm
- Coil OD 180 mm
- Disc OD 500 mm
- Coil Pack Height 112 mm

Courtesy of Alessandro Bertarelli



High-Jc - Single coil


Table 2. Key parameters of 26 T 35 mm MW-NI All-GdBCO magnet.

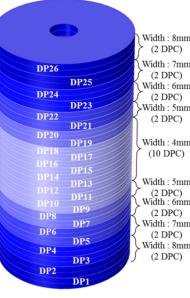

Parameter	M1	M2	M3	M4	M5			
Magnet configuration								
Average tape width (mm)	4.1	5.1	6.1	7.1	8.1			
Average tape thickness (µm)	146	145	135	138	135			
Pancake-pancake spacer (mm)		0.	2 (GFR	P)				
Coil i.d.; o.d. (mm)		3:	5.0; 171	.9				
Overall height (mm)			327					
Number of DP	10	4	4	4	4			
Turn per DP	914	916	996	968	984			
Conductor per DP (m)	297	298	324	315	320			
Total conductor (km)	3.0	1.2	1.3	1.3	1.3			
Operation and performance								
Magnet constant $(mT A^{-1})$			109.2					
Operating temperature (K)		4.2 (1	iquid he	elium)				
Current density at	404	327	293	247	221			
$26.4 \text{ T (A mm}^{-2})$								
Inductance, L (H)			12.79					
Peak B_{\perp} (T)	1.54	1.59	1.82	2.08	3.68			
Time constant (77 K), τ_c (s)	947 (12.79 H/13.5 m Ω)							
Average surface contact			9.6					
resistance, $R_{\rm ct}$ ($\mu\Omega$ cm ²)								
Average DP-DP joint contact	tact 190 at 77 K; 160 at 4.2 K							
resistance ($n\Omega$ cm ²)								
Peak hoop stress at			286					
26.4 T (MPa)								

Figure 6. Test results in LHe at 4.2 K. Ramping was occasionally halted to check the magnet status. The axial field mapping was done at a power supply current of 207 A. The magnet reached 26.4 T at a power supply current of 242 A.

Sunam NI one-body ReBCO magnet 26.4 T in 35 mm, J central pancake 404 A mm⁻² (26.4 T HTS multi-width) overall diameter and height: 172 and 327 mm

S. Yoon et al. Supercond. Sci. Technol. 29 (2016) 04LT04

HTS tape specifications

		Specification	Target
Minimum J _{non-Cu} (4.2 K, 20 T)	(A/mm ²)	1500	3000
Minimum J _{non-Cu} (20 K, 20 T)	(A/mm ²)	600	1250
$\sigma(I_C)$	(%)	10	5
Minimum copper RRR	(-)		20
Minimum Unit Length (UL)	(m)	200	500
Minimum bending radius	(mm)	15	10
Allowable σ _{longitudinal non-Cu}	(MPa)	800	1000
Allowable compressive σ _{transverse}	(MPa)		400
Allowable tensile $\sigma_{transverse}$	(MPa)		25
Allowable shear τ _{transverse}	(MPa)		20
Range of allowable ε _{longitudinal}	(%)	-0.10.4	-0.1+0.5
Internal specific resistance ptransverse	$(n\Omega/cm^2)$		20

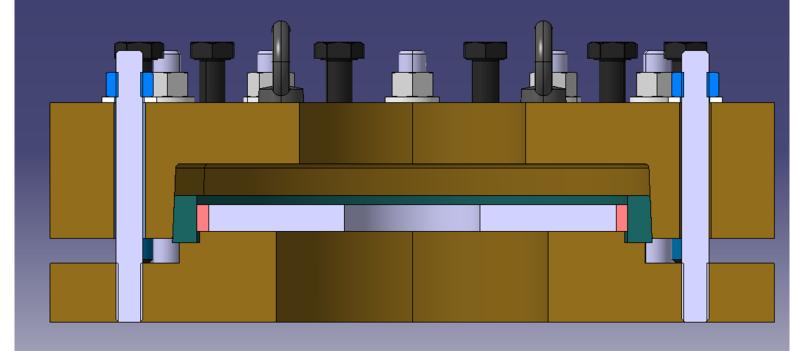
Width: 4 or 12 mm

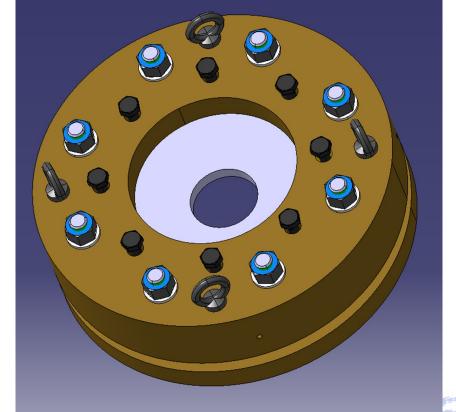
Substrate (non-magnetic alloy): 40...60 μm

Copper stabilizer (total): $20...40 \mu m$ Total tape thickness: $60...100 \mu m$

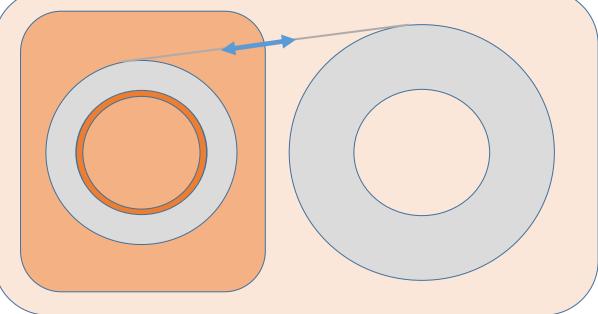
Some info on the experimental work

- The design work is complemented by a focused testing activity on short samples and coils, devoted to measuring directly performance and technology limits
- Electro-mechanical characterization relevant to UHF conditions, at University of Geneva (new experiment on single tape) and university of Twente
- Small pancakes manufactured and tested by CERN EP-ADO, possibly INFN-LASA and other beneficiaries. This activity profits from ongoing developments, and extends it


Courtesy of L. Bottura


Some info on the experimental work Precompression studies

Necessary to characterize mechanical properties of representative coil samples to validate this concept > a compressive jig with controlled compressive force is proposed to test pancake coil (customized design based on Shrink Disc concept) at CERN Mechanical Measurement Lab


Some info on the experimental work Winding & Plating Studies

 A small winding machine, also allowing tin coating has been built at CERN to start winding and plating studies

A Pancake is wound on Hastelloy solder coated 1-2 mm ring at 190<T<200 degree at certain tension

Courtesy of A. Dudarev

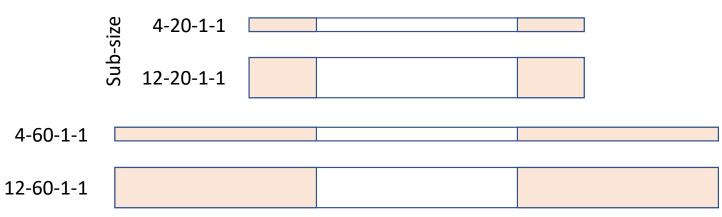
Some info on the experimental work Why a small-size single pancake or a stack of pancakes?

- It is the natural intermediate step between the tape critical current, and other tests, and the final solenoid configuration
- It is easy to wind and test

Courtesy of L. Bottura

- It reproduces relevant conditions of field, force and energy density (can be tested in a background field)
- It is small and does not waste material
- Parametrical studies can be performed to test fabrication parameters and manufacturing technique (winding tension, insulation method...)
- With properly chosen geometry it can be used to test some of the technology of a final solenoid (joints, resistance control, reinforcements)

Some info on the experimental work Reference pancake configurations



- 60 mm inner diameter
- 20 mm and 60 mm thickness
- 4 mm and 12 mm tape width

- One- and two-in-hand winding
- Pancakes can be stacked in mini-coils

Courtesy of L. Bottura

Identical/similar configurations used at CERN, INFN, PSI

Some info on the experimental work Test of pancakes as inserts

- Testing at LNCMI of a selected number of coils/stacks is foreseen as part of MuCol Task 7.2
- 20 T, 170 mm warm bore, 120 mm cold bore
- Could host the 20 mm thick stacks, total field reach approximately 40 T
- Two sessions per year are planned, each testing session is one week long
- Testing time in 2024 should be declared at the next call (November 2023)
- LNCMI is eager to collaborate, to advance their R&D, and prepare the upcoming INFRA-TECH-24-01 proposal (due Spring 2024)

Courtesy of L. Bottura

Risk and mitigation plan

Courtesy of L. Bottura

Risk	Mitigation action (program)	Tests (tape length)
Reaching field/sub-optimal performance	Use pancakes to test performance (force and thermal cycles) and compare to expected performance from characterized tapes (NOTE: need of complete Ic(B,T,angle) scaling)	10 sub-size (500) 5 full-size (1250)
Tape degradation during coil manufacturing	Test performance before/after winding at 77 K, partly covered by previous item. Dedicated tests to be performed for: soldering or potting, double pancakes and transitions, joints	10 sub-size (500)
Coil internal mechanics and mechanical properties	Instrumented stacks and dummy pancakes to verify stress components and distributions. Reinforcements and bonding of turns	20 stacks (200) 10 dummy (500) 10 sub-size loading (500)
Coil external mechanics and pre-load	Pre-loading structure development and tests	5 dummy (250) 5 sub-size loading (250) 5 full-size loading (1250)
Inter-turn resistance control and variants	Produce baseline windings (e.g. soldered, no insulation control) and variants introducing intrinsic and extrinsic resistance control	15 sub-size (750)
Joints resistance and stability	Produce test configuration for pancake joints and unit electrical/mechanical test. Integrate joints in pancakes and test resistance and stability (force and thermal cycles)	20 single joints (200) 10 sub-size (500) 2 full-size (500)
Quench detection	Introduce and test diagnostics in above tests. Select baseline (voltage ?) for comparison	Use above pancakes for dedicated tests
Quench protection	Test energy release and temperature increase in provoked and spontaneous quenches	Use above pancakes for dedicated tests
Coil dynamic forces	Test mini-coil stacks of pancakes	12 full-size (3000)