

Non Collider Collaboration

Reports of the working group: Muon Acceleration

by Antoine Chance (CEA Paris-Saclay)

Acknowledgements: F. Batsch, Christian Carli, H. Damerau , David Amorim , Kyriacos Skoufaris , Fulvio Boattini, Max Topp-Mugglestone, I. Karpov, Elias Metral, Scott Berg, Luca Bottura, Alexej Grudiev, Daniel Schulte

Goal: fast acceleration (after recirculating linacs) to collision energy

- Pulsed synchrotrons challenging
- Very fast magnet ramping (power, eddy ..)
- Orbit variations with fixed SC and cycled NC magnets
- Circumference variations and longitudinal dynamics
- Strong collective effects

• FFAs (vertical) as an alternative

 <u>A lot of iterations with other WGs</u> on magnet design, beam loss, collective effects, radiation protection ..

Tasks within MuCol

Task 1

Coordination and Communication

Task 2

Collider design

Task 3 (CEA, CERN, JAI, BNL) Pulsed synchrotron and FFA design

Task 4

Beam dynamics

Task 5

MDI design and background to experiment

Task 6

Radiation studies for the accelerators

- The WG « Muon Acceleration » is covered by some tasks of MuCol.
- This WG is focused on parameter optimization, optics design, lattice integration.
- Some activities are in close interaction with other WGs:
 - Magnetic Systems (pulsed magnets)
 - RF systems
 - Beam-matter interaction
 - Collective effects
 - Matching conditions with WG Collider

Muon Acceleration WG

- 14 meetings to date, with participants from most collaborating institutes and universities
- Since February 2022 we meet:
 - to discuss in an informal setting initial ideas and options, and
 - in preparation of upcoming activities, in particular the EU MuCol

janvier 20	23	
	19 janv.	14th meeting on HEMAC discussions
novembre	e 2022	
	22 nov.	13th meeting on HEMAC discussions
	01 nov.	12th meeting on HEMAC discussions
octobre 2	022	
	04 oct.	11th meeting on HEMAC discussions
septembr	e 2022	
	20 sept.	10th meeting on HEMAC discussions
	06 sept.	9th meeting on HEMAC discussions
juillet 202	2	
	12 juil.	8th meeting on HEMAC discussions

Rapid Cycling Synchrotron

Detailed parameter table: <u>https://cernbox.cern.ch/index.php/s/I9VpITncUeCBtiz</u>

• Chain of rapid cycling synchrotrons, counter-rotating μ^+/μ^- beams \rightarrow 63 GeV \rightarrow 0.31 TeV \rightarrow 0.75 TeV \rightarrow 1.5 TeV (\rightarrow 5 TeV)

- Hybrid RCSs have intersecting normal conducting (NC) and superconducting (SC) magnets.
- The studies presented aim to determine the RF (cavity) and lattice parameter (number of RF stations, momentum compaction factor,...) → Parameteric study

A lot of constraints

L

- Muons decay very fast (Rest lifetime: 2.2 μs):
- We should accelerate as fast: τ_{acc} as low as possible.
 - Muon survival: $\frac{N_{ext}}{N_{inj}} = \left(\frac{E_{ext}}{E_{inj}}\right)^{-\frac{\tau_{acc}}{\tau_{\mu}(\gamma_{ext}-\gamma_{inj})}}$ for a linear ramp
- To decrease cost operation, we should:
 - Minimize the total voltage and thus energy gain per turn:

Energy gain: $\Delta E = \frac{E_{ext} - E_{inj}}{\tau_{acc}} \frac{L_{RCS}}{c} \Rightarrow RCS$ as small as possible

- Interest of a hybrid RCS: higher average field \Rightarrow smaller synchotron.
 - But different path lengths and orbits.
- Optimize the dipole ramp to minimize the power consumption.
- Find the best ratio extraction/injection ratio between the different acceleration stages.

See presentation at Collaboration Meeting

$$L_{NC} = 2\pi \frac{B\rho_{ext} - B\rho_{inj}}{B_{NC,ext} - B_{NC,inj}} = \pi \frac{B\rho_{ext} - B\rho_{inj}}{B_{NC}}$$

$$SC = 2\pi \frac{B\rho_{inj}B_{NC,ext} - B\rho_{ext}B_{NC,inj}}{B_{SC}(B_{NC,ext} - B_{NC,inj})} = \pi \frac{B\rho_{inj} + B\rho_{ext}}{B_{SC}}$$

Pa

Le

Parameters and tools: General parameter

			Stage 1		Stage 2		Stage 3		Stage 5TeV		Stage 5TeV LHC
asic data	Symbol	Unit	Value	Details	Value	Details	Value	Details	Value	Details	Value
articles	-	-	μ		μ		μ		μ		μ
osts	-	M€									
pe	-	-	RCS		hybrid RCS		hybrid RCS		hybrid RCS		hybrid RCS
namics											
celeration time	T	[ms]	0.34		1.09704595		2.37		6.37		6.37
ection energy	Eini	[MeV]/u	63000		313830		750000		1500000		1500000
ection energy	Eat	[MeV]/u	313830	defined by m	750000		1500000		5000000		5000000
nergy ratio	E oi/Eini		4.98		2.39		2.00		3.33		3.33
omentum at e	p/c	MeV/c	63106		313935		750106		1500106		1500106
omentum at e	p/c	MeV/c	313935		750106		1500106		5000106		5000106
umber of turns	n turn	-	17		55		66		55		72
anned Survival rate	NailNiai	-	0.9		0.9		0.9		0.9		0.9
otal survival rate	N./N.	-	0.9		0.81		0.729		0.6561		0.6561
cel. Gradient. linear for survival	G	[MV/m]	2.44		1.33		1,06		1.83		1.83
equired energy gain per turn	ΔE	[MeV]	14755		7930		11364		63636		48611
ansition gamma	γ _{tr}	-	20.41		20.41		30.9		30.9		30.9
ection relativistic mass factor	Yini	-	597		2971		7099		14198		14198
ection relativistic mass factor	Yei	-	2971		7099		14198		47323		47323
ection v/c	Bini	%	0.9999986		0.999999943		0.9999999901		0.9999999975		0.9999999975
ection v/c	B .	%	0 999999943		0 9999999901		0 9999999975		0 9999999998		0 999999999
	Pej										
rameter Classical RCS											
adius	R	[m]	953.3		953.3		1703.0		5570.4		4242.9
rcumference	2πR	[m]	5990		5990		10700		35000		26659
rcumference Ratio	R _{i+1} /R _i	-	-		1		1.79		3.27		0.76
ack fraction	?	-	0.61		0.61		0.628		0.704		0.848
end radius	PB	m	581.8		581.8		1070.2		3920.5		3596.2
ot. straight section length	L _{str}	[m]	2334.7		2335.7		3975.7		10366.7	ok	4063.3
ection bending field (average)	Bini	[1]	0.36		1.80		2.34		0.64		1.39
ection bending field (average)	Bai	(TI	1.8		4.30		4.68	4.68	1.28		4.64
ection minus injection field	B	m	1.44		2.50		2.34		0.64		3.25
enter bending field (B_NC=0)	sj = inj	m			3.05		3 51		0.96		3.01
imber of dipoles	D.				0.00		0.01		0.00		0.01
ot, number of magnets	-	-									
agnet gap	?	[cm]									
ax. power for magnets	?	[MW]									
amp rate	B dot	[T/s]	4198.9		3281.5		1518.5		565.2		628.0
epetition rate		[Hz]	5		5		5		5		5
rameter Hybrid RCS											
ength of normal conducting section	1	[m]	3655.3		2539 26	2539 26	4366.29	4366.29	20376 02	-20376 02	18338 42
aximum field super conducting	B	111	0000.0		10	2000.20	10	4000.20	16	20070.02	16000.42
wheth of super conducting costing	Usc,max	[1] [m]	-		1115.00		2259.00		4257.07	ok	4057.07
ingth of super conducting section	L 50	[m]	-		1115.02		2358.02		4207.27	UK	4257.27
ection bending field (normal cond.)	B _{nc,inj}	[1]	-		-1.80		-1.80		-1.80		-2.00
ection bending field (normal cond.)	Berei	III III	-		1.80		1.80		1.80		2.00

RF							
Systems	-	-	TESLA	TESLA	TESLA		
Main RF frequency	f _{RF}	[MHz]	1300	1300	1300	1300	130
Harmonic number	h	-	25957	25957	46367	151667	11552
Revolution frequency ej	f _{rev}	[kHz]	50.08	50.08	28.04	8.57	11.2
Revolution period	Trev	[µs]	20.0	20.0	35.7	116.7	88.
Max RF voltage	V RF	[GV]	20.87	11.22	16.07	90.00	68.7
Max RF power	PRF	[kW]	850.6	421.2	320.5	548.7	550.
RF Filling factor – guess	-	-	0.4	0.4	0.45	0.45	0.4
RF Filling factor – minimal reqired	-	-	0.38	0.21	0.17	0.45	0.4
Number RF stations	-	-	Around 50	Around 50	Around 50		
Cavities	-	-	9-cell	9-cell	9-cell		
Number of cavities	?	-	696	374	536	3000	229
Peak Impedance		[Ω]					
Gradient in cavity	$\Delta E/L$	[MV/m]	30	30	30	30	3
Average energy gain per total straight	$\Delta E/L$	[MeV/m]	6.3	3.4	2.9	6.1	12.
Accelerating field per total straight	$\Delta E/L$	[MeV/m]	8.9	4.8	4.0	8.7	16.
Accelerating field gradient, with FF	$\Delta E/L$	[MV/m]	22.3	12.0	9.0	19.3	37.
Stable phase	φs	[°]	45	45	45	45	4
Conversion factor mm mrad – eVs	-	eVs/mm mrac	69.40	165.86	760.34	2534.47	2534.4
Longitudinal emittance (σΕ * 4σz)	ε ^z n	[eVs]	0.025 7.5 MeV m	0.025	0.025	0.025	0.02
Longitudinal emittance (phase space area)	ε ^z n	[eVs]	0.079	0.079	0.079	0.079	0.07
Injection bucket area	A _{B,inj}	[eVs]	0.62	1.01	2.11	3.91	3.9
Ejection bucket area	A _{B,Ej}	[eVs]	1.37	1.56	2.99	7.14	7.1
Bucket area reduction factor	A _B /A _{B.st}	-	0.172	0.172	0.172	0.172	0.17
Horizontal betatron tune	Qh	-					
Vertical betatron tune	Qv	-					
Average horizontal Twiss beta	βh	[m]	10	10	10	10	1
Average vertical Twiss beta	βv	[m]	10	10	10	10	1
Injection synchrotron frequency	f _{S.ini}	[kHz]	76.33	25.07	9.59	8.88	8.8
Ejection synchrotron frequency	f _{S,ej}	[kHz]	34.20	16.22	6.78	4.86	4.8
Injection synchrotron tune Q _s	$f_{s,inj}/f_{rev}$	-	1.52	0.50	0.34	1.04	0.7
Ejection synchrotron tune Qs	fs.Eilfrey	-	0.68	0.32	0.24	0.57	0.4
Synchrotron losses	-	[kW]					
Cavity R/Q	R/Q	[Ω]	518	518	518		
External Q	Q _{ext}	-	2.20E+06	2.20E+06	2.20E+06	2.20E+06	2.20E+0
Momentum compaction factor	α	-	0.0024	0.0024	0.0010	0.0010	0.001
Phase slip factor at ini	h	-	-0.0024	-0.0024	-0.0010	-0.0010	-0.001

Detailed parameter table:

https://cernbox.cern.ch/index.php/s/I9VpITncUeCBtiz

- - --

Courtesy: Fabian Batsch

and the second s

RCS2: Case SC first with 5 dipoles and 208 cells

That is possible to get a path length variation of about 1 cm. However, the cell is very compact.

Although the energy ramp is quasi-linear, the synchronous phase varies by more than 10 degrees.

The voltage is assumed to be constant in the cavity.

See presentation at Collaboration Meeting

First test of Genetic Algorithms for accelerator parameters optimization SPS and LHC tunnels,

- Example: try to fit the RCS 4 in the LHC tunnel (27 km), the RCS 1 and RCS 2 in the SPS tunnel (7 km)
 - With stronger field magnets (16 T for the SC and 2.0 T for NC magnets)
 - Preserving the beam transmission through the chain
- Reach 4.4 TeV per beam after rough optimization
- Similar values reached by F. Batsch with parametric study
 Courtesy: David Amorim
 See <u>HEMAC meeting 13</u>

1.8T and 16T for RCS 4 magnets

RCS 1: general stability criteria for RF cavity High Order Modes (HOMs)

• Cavity HOMs will create resonant wakefields

- Derived from simulations general stability criteria:
 - R_s < 100 [MΩ/m] * Q / f² [GHz²] (single turn)
 - $R_s < 10^{13} \Omega/m$ (multi-turn)
- S Example application for the most critical HOM of ILCtype cavity
 - $[R_s/Q]_{threshold} = 100/2.45^2 = 16.7M\Omega/m$
 - $[R_s/Q]_{total} = 2.1 M\Omega/m$
 - HOM below the predicted stability limit by factor 8

See presentation at Collaboration Meeting

Stability limit versus resonator parameters

UON Collide

Longitudinal dynamics summary (1) – HOM power

Courtesy: Fabian Batsch

Question of HOM power for the TESLA cavity raised during collaboration meeting

- → Topic of <u>Accelerators Design Meeting</u> on February 27th
- \rightarrow Calculation of HOM power in TESLA / ILC 1.3 GHz cavity calculated in two ways:
- 1. Calculate power loss through loss factor k_{\parallel} from simulations of the short-range wakefield containing the information about all HOM:

$$k_{||} = \int \lambda(t) W_{||,SR}(t) dt$$
, with $W_{||,SR}$ the short-range wake potential

$$\Rightarrow P_{HOM} = k_{||} * \frac{Q^2}{T_B}$$
 with bunch charge Q and bunch spacing $T_B = T_{rev}$

2. Estimation from <u>ABCI</u> simulations and the approximated loss factor for short Gaussian bunches:

$$k_{||} = |rac{R}{Q}|rac{\omega_r}{2}$$
 ($rac{\omega_r}{4}$ for Linac norm)

$$\bigcirc$$
 HOM loss factor is sum over all HOMs: $k_{||} = \sum k_{||,}$

мс	DE	FREQ.	R/Q	2 welded couplers on asymmetric cavity Qext	2 demount. couplers on asymmetric cavity Qext	2 demount. couplers on symmetric cavity Qext
		[MHz]	[Ω]	[1.0E+3]	[1.0E+3]	[1.0E+3]
. M 0 .	11 1	2379,6	0,00	350,0	1150	1600
	2	2384,4	0,17	72,4	360	460
	3	2392,3	0,65	49,5	140	220
	4	2402,0	0,65	84,0	68	110
	5	2414,4	2,05	32,0	70	97
	6	2427,1	2,93	29,1	81	59
1	7	2438,7	6,93	20,4	66	49
	8	2448,4	67,04	27,4	58	51
	9	2454,1	79,50	58,6	110	100

From

"Higher order mode coupler for TESLA", J. Sekutowisz

Results for HOM power

Courtesy: Fabian Batsch

1. From BLonD, for the induced voltage of 1.1 MV/m per cavity, we obtain around 10 kW per bunch and cavity for RCS1!

(Bunch population 2.54x10¹², Q=407 nC, $T_{rev} = 20 \ \mu s \rightarrow I = 20.4 \ mA$)

2. From HOMs from <u>ABCI</u>: (ABCI file from S.-A. Udongwo):

1.5 V/pC results in 7.9 kW! → Consistent with BLonD

- → Large 10 kW HOM power per bunch is a current concern, extremely challenging to handle
- → HOM power coupler for 3-4 kW under development → up to 20 kW per cavity estimate
- → The present parameter tables are based on the ILC cavity (1.3GHz), but a lower frequency, e.g. 800MHz, might be required if the power cannot be handled

RCS 1: Effect of chromaticity on transverse beam stability

- Simulation with a factor 2 on the impedance model
- Check the effect of chromaticity
 - § In particular for the **natural chromaticity** Q'=-Q
 - S Could we operate without sextupoles?
- Visible emittance growth and headtail motion with Q'=-19

Courtesy: David Amorim

See Accelerator design meeting 21/11/2022

10 TeV collider: Minimum chamber radius achievable versus material

Courtesy: David Amorim

- Investigate different materials for the vacuum chamber
 - Tungsten 300 K and 80 K, Copper 300 K and 80 K
- Find the chamber radius such as the emittance growth stays below 20 % for different damper gains.
- With 100-turn damper: 17 mm radius required with Copper at 300 K, versus 25 mm with Tungsten at 300 K

Accelerator magnets and powering system status

Preliminary results

Due to the considerable level of peak power required by the acceleration stage, the best approach is to **use LC discharge circuits**. Dual harmonics discharge circuits have been analyzed. They can provide **close to linear Bref shapes during the acceleration**. A pure linear acceleration profile will probably be extremely expensive because of the huge correcting power that the power electronics would be called to provide via the active filter.

However, the total power must be divided into several sectors (~100). So many LC circuits will probably all resonate differently due to differences in the LC parameters (and temperature effects). The active filter role would then be to correct the differences among all circuits which boils down to defining the required control accuracy.

It is important to optimize the design of the accelerating magnets and the power system together, in order to find an optimal solution with an acceptable cost.

Optimal (lower cost) overall design

Accelerator magnets and powering system next steps

International UON Collider ollaboration **Resistive Magnets**

Courtesy: Fulvio Boattini

Comparison of different Dipoles designs with different steel materials (CERN/UNIBO):

Comparison will be made based on:

- Total NRG Vs Gap NRG ratio
- Losses in Iron and copper
- Material volume and cost

Integrated design of magnets and power systems requires magnetic models that consider saturation of magnetic materials and hysteresis (CERN/TUD)

Superconductive Magnets

Exploring SC magnet concepts that may profit from a rectangular aperture

- Simplify magnet design, profiting from the small aperture (30 mm x 100 mm)
- Adapt coil geometry
- Attempt to use uniform technology through the collider complex
 - HTS windings (for robustness)
 - High current density (for cost reasons)
 - Operation at high temperature (for energy efficiency)
- We need to confirm beam decay losses (average 3W/m?)

FFAs for muon acceleration

Courtesy: Max Topp-Mugglestone

Why FFAs?

- Time-independent magnetic fields
 - No ramp times
 - Rate of acceleration limited only by RF
 - Mitigates engineering challenges of designing and powering fast-ramping dipoles
 - All magnets can be superconducting DC magnets

hFFA	vFFA
- Higher energy orbits are radial enlargements of low energy orbits	- High energy orbits are exact vertically translated copies of low energy orbits
Zero chromaticity with $B = B_0 \left(\frac{r}{r_0}\right)^k$	- Zero chromaticity with $B = B_0 e^{mz}$
	- Zero momentum compaction factor
	- Quasi-isochronous (fixed RF frequency)

Drawback of the vFFA

Courtesy: Max Topp-Mugglestone

- Limited understanding of optics
 - Unique coupling behaviour
 - Dominated by skew quadrupole focussing
 - Solenoid components in fringe fields
 - Nonplanar orbits
- Challenging optimisation

	FODO	FDF
Energy	50 GeV to 1.5 TeV	50 GeV to 1.5 TeV
Cell length	35 m	52.5 m
Magnet length	2 x 15 m	3 x 15 m
# of cell	810	540
Maximum field	8.7 T	10.6 T
Field index m	6.8	3.0
Orbit excursion	0.50 m	1.13 m
Cell tune	0.3957 / 0.0861	0.3510 / 0.1515

Table: early vFFA muon accelerator design parameter exercise (S. Machida, 2020)

- Current research field: develop understanding of vFFA and optimise vFFA lattice for muon acceleration
 - Reduce ring size
 - Reduce excursion
 - Maximise dynamic aperture

Update of vFFA study

Courtesy: Max Topp-Mugglestone

- Analytic model of vFFA optics for large-ring
 FODO lattices has been developed
 - Non-planar orbit geometry
 - Parameters of closed orbit derived from geometric constraints
 - 4d decoupled tunes and stability of candidate lattices can be evaluated without numerical simulation* Numerical crosscheck of new model is not complete!
- Next steps:
 - Numerical benchmarking of analytic model
 - Use analytic model to optimise vFFA lattices for muon acceleration
 - Optimising for lowest peak B-field, lowest excursion (difference in orbit position between injection and extraction) for given energy sweep.
- Physical prototype of vFFA magnet due for construction

Figure: 3d geometry of the closed orbit model for a vFFA FODO half-cell. The red line shows the closed orbit; the blue and green boxes represent the D and F magnets respectively. The z-axis is positioned at the machine centre

Summary and next steps

- The main goal of this WG is to gather information (from other WGs) to get a coherent parameter table for a chain of pulsed synchrotrons or FFA. We get regular meetings in this aim.
- A parameter table is regularly updated here: <u>https://cernbox.cern.ch/index.php/s/I9VpITncUeCBtiz</u>
 - The current baseline has 4 RCS to go up to 5 TeV with possible reuse of LHC tunnel.
 - Genetic algorithms are considered also to optimize the different stages (already a good agreement with current table).
- We have a margin of 8 on stability due to (ILC-like) cavity impedance.
 - Nevertheless, the HOM power is huge: **10 kW**.
 - We will consider **another frequency like 800 MHz** to see the improvement.
- Stability studies show that we should correct the chromaticity in RCS1.
- For the collider, resistive wall impedances require a beam screen radius of 17 mm with Copper at 300 K against 25 mm with Tungsten at 300 K. The studies need to be updated for the acceleration chain.
- Dual harmonics discharge circuits can provide close to linear Bref shapes during the acceleration.
- We have first design of the resistive and SC magnets. The work is on-going.
- Analytic model of vFFA optics for large-ring has been developed. The next steps are numerical benchmarking, lattice
 optimization and magnet protype construction.

Note the second second

Thank you for your attention

Strong interaction with other WPs

MuCol Milestones

Milestone	Milestone name	Related work	Due date (in	Means of verification
number		package(s)	month)	
5.1	Mini-Workshop with pulsed	5.1, 5.3	12	Minutes of the workshop
	magnets			
5.2	Preliminary design of the	5.2	18	Optics files
	interaction region			
5.3	Preliminary design of the collider	5.2	18	Optics files
5.4	Preliminary design of the pulsed	5.3	18	Optics files
	synchrotrons			
5.5	Preliminary design of the FFA	5.3	24	Optics files
5.6	Impedance budget in the collider	5.4	24	Dataset
	and pulsed synchrotron			

. . . .

Parameters and tools: RF – The TESLA cavity

From design report

- Studies are based on the 1.3 GHz Tesla cavity (design report: Phys. Rev. ST Accel. Beams 3, 092001, 2000)
 - \rightarrow see <u>talk</u> by A. Yamamoto
- Relevant beam parameter
 - Bunch population 2.54x10¹², \mathcal{E}_{L} =0.01 eVs \rightarrow large intensity effects
 - Bunch current 20.4 / 18.8 / 10.0 mA \rightarrow 2x430 kW per cavity
 - 700 / 374 / 532 cavities in ring, distributed over n_{RF} RF stations (with 30 MV/m accelerating gradient)
 - Synchronous phase 45° (above transition: $\gamma_{tr} = 20.41$, 600 < γ < 14200)
- TESLA Cavity parameter (9 cells, L=1.06 m):
 - $f_{\rm RF}$ = 1.3 GHz \rightarrow harmonic number h = 25957 to 46367
 - $R/Q = 518 \Omega$, total $R_s = 306 G\Omega$
 - Gradient 30 MV/m

 $Q_{\rm L}$ = 2.2e6 (for beam loading compensation with Δf = 320 Hz)

Table 2: TTF cavity design p	arameters. ^a
type of accelerating structure	standing wave
accelerating mode	TM_{010} , π mode
fundamental frequency	1300 MHz
design gradient E_{acc}	25 MV/m
quality factor Q_0	$> 5 \cdot 10^9$
active length L	1.038 m
number of cells	9
cell-to-cell coupling	1.87~%
iris diameter	70 mm
geometry factor	$270 \ \Omega$
R/Q	518 Ω
$E_{\rm peak}/E_{\rm acc}$	2.0
$B_{\rm peak}/E_{\rm acc}$	4.26 mT/(MV/m)
tuning range	\pm 300 kHz
$\Delta f/\Delta L$	315 kHz/mm
Lorentz force detuning at 25 MV/m	$\approx 600 \text{ Hz}$
Q_{ext} of input coupler	3.10^{6}
cavity bandwidth at $Q_{\text{ext}} = 3 \cdot 10^6$	430 Hz
RF pulse duration	1330 μs
repetition rate	5 Hz
fill time	$530 \ \mu s$
beam acceleration time	$800 \ \mu s$
RF power peak/average	208 kW/1.4 kW
number of HOM couplers	2
cavity longitudinal loss factor \mathbf{k}_{\parallel} for $\sigma_z=0.7~\mathrm{mm}$	10.2 V/pC
cavity transversal loss factor \mathbf{k}_{\perp} for $\sigma_z = 0.7 \text{ mm}$	15.1 V/pC/m
parasitic modes with the highest impedance : type	TM_{011}
$\pi/9$ $(R/Q)/$ frequency	$80 \ \Omega/2454 \ \mathrm{MHz}$
$2\pi/9$ $(R/Q)/$ frequency	$67 \ \Omega/2443 \ \mathrm{MHz}$
bellows longitudinal loss factor \mathbf{k}_{\parallel} for $\sigma_z=0.7~\mathrm{mm}$	1.54 V/pC
bellows transversal loss factor \mathbf{k}_{\perp} for $\sigma_z=0.7~\mathrm{mm}$	1.97 V/pC/m

Courtesy: Fabian Batsch

From design report