# Di-Hadron Production and the Transversity Distribution of the Nucleon

(Andreas Metz, Temple University)

- Part 1 Definition, interpretation and evolution of di-hadron fragmentation functions (DiFFs)
   (D. Pitonyak, C. Cocuzza, A. Metz, A. Prokudin, N. Sato, 2305.11995)
- Part 2 Simultaneous global analysis of DiFFs, transversity PDFs, and tensor charges
   (C. Cocuzza, A. Metz, D. Pitonyak, A. Prokudin, N. Sato, R. Seidl, 2306.12998)



## Motivation

- In spin physics, DiFFs relevant for extraction of transversity  $h_1^q$
- Access to transversity using chiral-odd spin-dependent FFs
  - Single-hadron fragmentation (Collins effect) (Collins, 1992)

$$h_1^q \otimes H_1^{\perp \, h/q}$$

correlation btw transverse quark spin and transverse momentum of hadron, TMD factorization

- Single-hadron fragmentation using collinear twist-3 factorization (Kang, Yuan, Zhou, 2010 / Metz, Pitonyak, 2012)
- Di-hadron fragmentation (Collins, Heppelmann, Ladinsky, 1993)

$$h_1^q \otimes H_1^{\sphericalangle \, h_1 h_2 / q}$$

correlation btw transverse quark spin and relative transverse momentum of  $(h_1, h_2)$ , collinear factorization

- Previous work on di-hadron production related to spin physics almost exclusively by Pavia Group
- Extraction of  $h_1^q$  from global analysis of di-hadron data (Radici, Bacchetta, 2018)
  - resulting tensor charge

$$\delta q = \int_0^1 dx \left( h_1^q(x) - h_1^{\overline{q}}(x) \right) \qquad \qquad g_T = \delta u - \delta d$$



figure modified from arXiv:2205.00999 (JAM-3D)

for  $\delta u$ , some tension between di-hadron channel on the one hand, and single-hadron channel and lattice QCD on the other

- Independent numerical analysis of di-hadron channel well motivated
- We also revisited the definition, interpretation and evolution of DiFFs

#### Lessons from Single-Hadron Fragmentation Functions

• Process and frames

$$q(k) \to h(P_h) + X$$
  $P_h^- = zk^-$  large

hadron frame: 
$$\vec{P}_{hT} = 0$$
  $\vec{k}_T \neq 0$   
parton frame:  $\vec{P}_{h\perp} \neq 0$   $\vec{k}_{\perp} = 0$   $(\vec{P}_{h\perp} = -z\vec{k}_T)$ 

• Definition and interpretation

$$D_1^{h/q}(z, z^2 \vec{k}_T^2) = \frac{1}{4z} \int \frac{d\xi^+ d^2 \vec{\xi}_T}{(2\pi)^3} e^{ik \cdot \xi} \operatorname{Tr} \left[ \langle 0 | \psi_q(\xi) | h, X \rangle \langle h, X | \bar{\psi}_q(0) | 0 \rangle \gamma^- \right]_{\xi^- = 0}$$
$$= D_1^{h/q}(z, \vec{P}_{h\perp}^2)$$

-  $D_1^{h/q}(z, \vec{P}_{h\perp}^2)$  is number density (see, e.g., Collins, Foundations of Perturbative QCD) -  $D_1^{h/q}(z, \vec{P}_{h\perp}^2) dz d^2 \vec{P}_{h\perp}$  is number of hadrons h in [z, z+dz],  $[\vec{P}_{h\perp}, \vec{P}_{h\perp}+d^2 \vec{P}_{h\perp}]$ - factor 1/4z is crucial for interpretation as number density • Collinear FF

$$D_1^{h/q}(z) = \int d^2 ec{P}_{h\perp} \, D_1^{h/q}(z,ec{P}_{h\perp}^2)$$

• Number of hadrons in quark q

$$\sum_h \int dz \, D_1^{h/q}(z) = N^q \, .$$

• Momentum sum rule (Collins, Soper, 1981 / Meissner, Metz, Pitonyak, 2010)

$$\sum_h \int dz\, z\, D_1^{h/q}(z) = 1$$

• Leading-order cross section for  $e^-e^+ \to hX$ 

$$\frac{d\sigma}{dz} = \sum_{q,\bar{q}} \hat{\sigma}^q D_1^{h/q}(z) \quad \text{with} \ \hat{\sigma}^q = \hat{\sigma}^{\bar{q}} = \hat{\sigma}(e^-e^+ \to \gamma^{(*)} \to q\bar{q}) = \frac{4\pi e_q^2 \alpha_{\text{em}}^2 N_c}{3Q^2}$$

• Number density interpretation also for transversely polarized quarks:

(symbolic) 
$$\operatorname{Tr}\left[\ldots i \, \sigma^{i-} \gamma_5\right] \rightarrow \operatorname{pre-factor} \times H_1^{\perp \, h/q}(z, \vec{P}_{h\perp}^2)$$

#### Definition and Interpretation of DiFFs

• Process and frames

$$q(k) \to h_1(P_1) + h_2(P_2) + X \qquad P_h^- = zk^- \text{ large}$$
$$P_h = P_1 + P_2 \qquad R = \frac{1}{2} \left( P_1 - P_2 \right) \qquad P_{1,2}^- = z_{1,2}k^- \qquad z = z_1 + z_2$$

hadron frame: 
$$\vec{P}_{hT} = 0$$
  $\vec{k}_T \neq 0$   
parton frame:  $\vec{P}_{h\perp} \neq 0$   $\vec{k}_{\perp} = 0$   $(\vec{P}_{h\perp} = -z\vec{k}_T)$ 

• Definition and interpretation

$$\begin{aligned} \frac{1}{64\pi^3 z_1 z_2} \int \frac{d\xi^+ d^2 \vec{\xi}_T}{(2\pi)^3} e^{ik \cdot \xi} \operatorname{Tr} \Big[ \langle 0 | \psi_q(\xi) | h_1, h_2, X \rangle \langle h_1, h_2, X | \bar{\psi}_q(0) | 0 \rangle \gamma^- \Big]_{\xi^- = 0} \\ &= D_1^{h_1 h_2 / q} (z_1, z_2, \vec{P}_{1\perp}, \vec{P}_{2\perp}) \equiv D_1^{h_1 h_2 / q} (z_1, z_2, \vec{P}_{1\perp}^2, \vec{P}_{2\perp}^2, \vec{P}_{1\perp} \cdot \vec{P}_{2\perp}) \end{aligned}$$

- $D_1^{h_1h_2/q}(z_1, z_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$  is number density for hadron pairs  $(h_1, h_2)$
- factor  $1/64\pi^3 z_1 z_2$  is crucial for interpretation as number density
- previously defined/used DiFFs in spin physics have no number density interpretation (starting from pioneering work by Bianconi, Boffi, Jakob, Radici, 1999)

• Collinear DiFFs (see also, Majumder, Wang, 2004)

$$D_1^{h_1h_2/q}(z_1, z_2) = \int d^2 \vec{P}_{1\perp} \, d^2 \vec{P}_{2\perp} \, D_1^{h_1h_2/q}(z_1, z_2, \vec{P}_{1\perp}, \vec{P}_{2\perp})$$

• Number of hadron pairs in quark q

$$\sum_{h_1,h_2} \int dz_1 dz_2 \, D_1^{h_1 h_2/q}(z_1,z_2) = N^q (N^q - 1)$$

• Momentum sum rule

$$\sum_{h_1} \int_0^{1-z_2} dz_1 \int d^2 ec{P}_{1\perp} \, z_1 \, D_1^{h_1 h_2 / q}(z_1, z_2, ec{P}_{1\perp}, ec{P}_{2\perp}) = (1-z_2) \, D_1^{h_2 / q}(z_2, ec{P}_{2\perp}^2)$$

- sum rule after  $\int d^2 \vec{P}_{2\perp}$  already in previous literature (de Florian, Vanni, 2003 / ...)
- similar (integrated) sum rule for double-parton distributions (Gaunt, Stirling, 2009 / ...)
- Leading-order cross section for  $e^-e^+ \rightarrow (h_1h_2)X$

$$\frac{d\sigma}{dz_1 dz_2} = \sum_{q,\bar{q}} \hat{\sigma}^q D_1^{h_1 h_2/q}(z_1, z_2) \quad \text{with} \ \hat{\sigma}^q = \frac{4\pi e_q^2 \alpha_{\text{em}}^2 N_c}{3Q^2}$$

#### Definition and Interpretation of Extended DiFFs

- More on kinematics
  - invariant mass of di-hadron pair, and alternative variable for longitudinal momentum

$$M_h^2 = P_h^2 = (P_1 + P_2)^2$$
  $\zeta = \frac{z_1 - z_2}{z}$ 

– momenta  $P_1$  and  $P_2$  in hadron frame  $(\vec{P}_{hT}=0)$ 

$$P_1 = \left(\frac{M_1^2 + \vec{R}_T^2}{(1+\zeta)P_h^-}, \frac{1+\zeta}{2}P_h^-, \vec{R}_T\right) \qquad P_2 = \left(\frac{M_2^2 + \vec{R}_T^2}{(1-\zeta)P_h^-}, \frac{1-\zeta}{2}P_h^-, -\vec{R}_T\right)$$

- important relation

$$ec{R}_{T}^{2} = rac{1-\zeta^{2}}{4}M_{h}^{2} - rac{1-\zeta}{2}M_{1}^{2} - rac{1+\zeta}{2}M_{2}^{2}$$

- Extended DiFFs (extDiFFs)
  - in contrast to  $D_1^{h_1h_2/q}(z_1,z_2)$ , extDiFFs (also) depend on  $M_h$  (or  $\vec{R}_T$ )
  - extDiFFs appear in transversity-related observables

- Number density interpretation for (properly defined) extDiFFs
  - when changing variables, include Jacobian of transformation in definition of DiFFs
  - example

$$D_1^{h_1h_2/q}(z,\zeta,ec{k}_T,ec{R}_T) = rac{z^3}{2} \, D_1^{h_1h_2/q}(z_1,z_2,ec{P}_{1\perp},ec{P}_{2\perp})$$

- further extDiFFs

$$egin{aligned} D_1^{h_1h_2/q}(z,M_h) &= \int d\zeta \, D_1^{h_1h_2/q}(z,\zeta,M_h) \ &= \int d\zeta \, rac{\pi}{2} M_h \, (1-\zeta^2) \, D_1^{h_1h_2/q}(z,\zeta,ec{R}_T^2) \end{aligned}$$

– experimental information on  $D_1^{h_1h_2/q}(z,M_h)$  from Belle (Seidl et al, 2017)

• Leading-order cross section for  $e^-e^+ \rightarrow (h_1h_2)X$  (example)

$$\frac{d\sigma}{dz \, dM_h} = \sum_{q,\bar{q}} \hat{\sigma}^q \, D_1^{h_1 h_2 / q}(z, M_h) \quad \text{with} \ \hat{\sigma}^q = \frac{4\pi e_q^2 \alpha_{\text{em}}^2 N_c}{3Q^2}$$

## **Evolution of DiFFs**

• Homogeneous and in-homogeneous contributions to evolution (sample diagrams)



• Evolution of extDiFFs (quark non-singlet)

$$\frac{\partial}{\partial \ln \mu^2} D_1^{h_1 h_2/q}(z,\zeta,\vec{R}_T^2;\mu) = \int_z^1 \frac{dw}{w} D_1^{h_1 h_2/q} \left(\frac{z}{w},\zeta,\vec{R}_T^2;\mu\right) P_{q \to q}(w)$$

- evolution of extDiFFs only contains homogeneous term (standard DGLAP) (see also Ceccopieri, Bacchetta, Radici, 2007)
- corresponding evolution equation for  $H_1^{\triangleleft \, h_1 h_2 / q}(z,\zeta, ec{R}_T^2;\mu)$
- Upon  $\int d^2 \vec{R}_T$ , we recover evolution of  $D_1^{h_1 h_2/q}(z_1, z_2; \mu)$  where in-homogeneous term contributes as well (de Florian, Vanni, 2003 / ...)

#### Simultaneous Extraction of DiFFs and Transversity PDFs

- Main observables/input for DiFFs
  - unpolarized cross section in  $e^-e^+ 
    ightarrow (h_1h_2)X$  (data from Belle)

$$rac{d\sigma}{dz\,dM_h} = rac{4\pilpha_{
m em}^2 N_c}{3Q^2} \sum_{q,ar q} \, e_q^2 \, D_1^q(z,M_h)$$

- PYTHIA event generator
- Artru-Collins asymmetry in  $e^-e^+ \rightarrow (h_1h_2)(\bar{h}_1\bar{h}_2)X$  (data from Belle)

$$A^{e^{-}e^{+}}(z, M_{h}, \bar{z}, \overline{M}_{h}) = \frac{\sin^{2}\theta \sum_{q,\bar{q}} e_{q}^{2} H_{1}^{\triangleleft,q}(z, M_{h}) H_{1}^{\triangleleft,\bar{q}}(\bar{z}, \overline{M}_{h})}{(1 + \cos^{2}\theta) \sum_{q,\bar{q}} e_{q}^{2} D_{1}^{q}(z, M_{h}) D_{1}^{\bar{q}}(\bar{z}, \overline{M}_{h})}$$

• Further constraints on DiFFs from transverse single-spin asymmetries in semi-inclusive DIS and proton-proton collisions (simultaneous analysis)

- Observables for transversity PDFs
  - transverse SSA in SIDIS (data from HERMES and COMPASS)

$$A_{UT}^{ ext{SIDIS}} = c(y) rac{\sum_{q,ar{q}} e_q^2 \, h_1^q(x) \, H_1^{\sphericalangle,q}(z,M_h)}{\sum_{q,ar{q}} e_q^2 \, f_1^q(x) \, D_1^q(z,M_h)}$$

- transverse SSA in pp collisions (data from STAR)

$$A_{UT}^{pp} = \frac{\mathcal{H}(M_h, P_{hT}, \eta)}{\mathcal{D}(M_h, P_{hT}, \eta)}$$

$$egin{aligned} \mathcal{H} &= 2P_{hT}\sum_i\sum_{a,b,c}\int_{x_a}^1 \mathrm{d}x_a\int_{x_b}^1 \frac{\mathrm{d}x_b}{z}\,h_1^a(x_a)\,f_1^b(x_b)rac{\mathrm{d}\Delta\hat{\sigma}_a\uparrow_{b o c}\uparrow}{\mathrm{d}\hat{t}}\,H_1^{\triangleleft,c}(z,M_h) \ \mathcal{D} &= 2P_{hT}\sum_i\sum_{a,b,c}\int_{x_a}^1 \mathrm{d}x_a\int_{x_b}^1 \frac{\mathrm{d}x_b}{z}\,f_1^a(x_a)\,f_1^b(x_b)rac{\mathrm{d}\hat{\sigma}_a\uparrow_{b o c}\uparrow}{\mathrm{d}\hat{t}}\,D_1^c(z,M_h) \end{aligned}$$

• Quality of fit: unpolarized cross section



• Quality of fit: Artru-Collins asymmetry



• Quality of fit:  $A_{UT}^{\text{SIDIS}}$  (data from HERMES, 2008 / COMPASS, 2023)



• Quality of fit:  $A_{UT}^{pp}$  (sample data for  $\sqrt{s} = 200 \,\mathrm{GeV}$  from STAR, 2015)





• Quality of fit:  $A_{UT}^{pp}$  (sample data for  $\sqrt{s} = 500 \,\mathrm{GeV}$  from STAR, 2017)

•  $\chi^2$  values for various data sets

| Experiment            | $N_{ m dat}$ | $\chi^2_{ m red}$ |
|-----------------------|--------------|-------------------|
| Belle (cross section) | 1094         | 1.05              |
| Belle (Artru-Collins) | 183          | 0.78              |
| HERMES                | 12           | 1.09              |
| COMPASS $(p)$         | 26           | 0.75              |
| COMPASS $(D)$         | 26           | 0.74              |
| STAR (2015)           | 24           | 1.83              |
| STAR (2018)           | 106          | 1.06              |
| Total                 | 1471         | 1.02              |

- Extracted DiFFs  $D_1^{\pi^+\pi^-/a}$  (a=q,g)
  - $D_1^u = D_1^d = D_1^{\bar{u}} = D_1^{\bar{d}}$   $D_1^s = D_1^{\bar{s}}$   $D_1^c = D_1^{\bar{c}}$   $D_1^b = D_1^{\bar{b}}$   $D_1^g$



• Extracted DiFF  $H_1^{\triangleleft \pi^+\pi^-/u}$ 

$$H_1^{\triangleleft u} = -H_1^{\triangleleft d} = -H_1^{\triangleleft \bar{u}} = H_1^{\triangleleft \bar{d}} \qquad H_1^{\triangleleft q} = 0 \text{ for } q = s, c, b$$



• Extracted transversity PDFs



- fit of  $h_1^{u_v}$ ,  $h_1^{d_v}$ ,  $h_1^{\bar{u}} = -h_1^{\bar{d}}$ large- $N_c$  constraint for antiquarks (Pobylitsa, 2003)

- Soffer bound (Soffer, 1995)
$$h_1^q(x) \leq rac{1}{2} ig| f_1^q(x) + g_1^q(x) ig|$$

- small-x constraint (Kovchegov, Sievert, 2019)  $h_1^q \xrightarrow{x \to 0} x^{\alpha_q} \qquad \alpha_q \approx 0.17 \pm 0.085$ 

- JAM3D\* = JAM3D-22 (no LQCD)  
+ antiquarks with 
$$h_1^{\overline{u}} = -h_1^{\overline{d}}$$
  
+ small-x constraint

agreement between all three analyses within errors

### Extraction of Tensor Charges



• Tensor charges and comparison with results from LQCD

- for  $\delta u$ , we find  $3.3\sigma$  discrepancy with ETMC,  $4.1\sigma$  discrepancy with PNDME
- what happens if LQCD results for  $\delta u$  and  $\delta d$  are included in the fit ?

• Quality of fit:  $\chi^2$  values for various data sets

|                       |              | $\chi^2_{ m red}$ |         |
|-----------------------|--------------|-------------------|---------|
| Experiment            | $N_{ m dat}$ | no LQCD           | w/ LQCD |
| Belle (cross section) | 1094         | 1.05              | 1.06    |
| Belle (Artru-Collins) | 183          | 0.78              | 0.78    |
| HERMES                | 12           | 1.09              | 1.12    |
| COMPASS $(p)$         | 26           | 0.75              | 1.25    |
| COMPASS $(D)$         | 26           | 0.74              | 0.78    |
| STAR (2015)           | 24           | 1.83              | 1.59    |
| STAR (2018)           | 106          | 1.06              | 1.18    |
| ETMC $\delta u$       | 1            |                   | 0.55    |
| ETMC $\delta d$       | 1            | —                 | 1.10    |
| PNDME $\delta u$      | 1            |                   | 8.20    |
| PNDME $\delta d$      | 1            | —                 | 0.03    |
| Total                 | 1475         | 1.02              | 1.05    |

- successful fit after inclusion of LQCD tensor charges

• Extracted transversity PDFs (w/ LQCD)



- Soffer bound (Soffer, 1995)  $h_1^q(x) \leq \tfrac{1}{2} \big| f_1^q(x) + g_1^q(x) \big|$
- small-x constraint (Kovchegov, Sievert, 2019)  $h_1^q \xrightarrow{x \to 0} x^{\alpha_q} \qquad \alpha_q \approx 0.17 \pm 0.085$
- after inclusion of LQCD tensor charges: (1) increase of  $h_1^{u_v}$  for  $x \gtrsim 0.3$ (2)  $h_1^{d_v}$  tends to become negative

- JAM3D\* = JAM3D-22 (w/ LQCD)  
+ antiquarks with 
$$h_1^{\bar{u}} = -h_1^{\bar{d}}$$
  
+ small-x constraint  
+  $\delta u$ ,  $\delta d$  from ETMC & PNDME

• Tensor charges (no LQCD vs w/ LQCD)



- noticeable shift for  $\delta u$  after including LQCD results

Overall finding: universal nature of all available information on  $h_1^q$  — (1) data for di-hadron production, (2) data for single-hadron production, (3) LQCD results for tensor charge, (4) Soffer bound, (5) small-x constraint

## Summary

- For both quarks and gluons, we propose a field-theoretic definition of DiFFs which have an interpretation as number densities
- Number density interpretation can be obtained for different variables of interest (including extDiFFs)
- Operator definition of DiFFs also allows one to "easily" obtain their evolution
- New numerical analysis of data on di-hadron production
- Main differences compared to previous analyses of di-hadron data: (1) inclusion of Belle cross section data, STAR 500 GeV data, all binnings for Artru-Collins and SIDIS asymmetries, (2) simultaneous fit of DiFFs and transversity PDFs,
   (3) small-x theory constraint, (4) improved functional form for DiFF fit functions,
   (5) inclusion of LQCD results for tensor charges
- We find compatibility of all available information on transversity PDFs