Drell-Yan Measurements at SeaQuest and SpinQuest at Fermilab

Kei Nagai
Los Alamos National Laboratory
June 26th, 2023

International Workshop on Hadron Structure and Spectroscopy 2023

1. Drell-Yan process and proton structure
2. Recent progress on SeaQuest analyses
3. Recent progress on SpinQuest
4. Summary

5. Drell-Yan process and proton structure

- LosAlamos Access proton structure

- Drell-Yan process
- $q+\bar{q} \rightarrow \gamma^{*} \rightarrow l+\bar{l}$
- Antiquark is always involved in the reaction
- Access antiquarks PDFs
- If the hadron is the proton, antiquark is always sea quark

- Fermi National Accelerator Laboratory (FNAL)
- 120 GeV proton beam provided by Main Injector
- Fixed target Drell-Yan experiment
- Typical momentum of the muon $\sim 40 \mathrm{GeV}$
- Four tracking stations
- Drift chamber (St.1-3) or proportional tube (St.4)
- Hodoscopes
- Data acquisition:
- SeaQuest: 2014-2017 8.6 $\times 10^{17}$ POT

- SpinQuest: Beam commissioning will start this year

Sanapp-p Drell-Yan Process

- $\frac{d^{2} \sigma}{d x_{t} d x_{b}}=\frac{4 \pi \alpha^{2}}{9 x_{t} x_{b}} \frac{1}{s} \sum e^{2}\left[\bar{q}_{t}\left(x_{t}\right) q_{b}\left(x_{b}\right)+\left(\overline{q_{b}}\left(x_{b}\right) q_{t}\left(x_{t}\right)\right)\right.$
- $x_{t} \ll x_{b}$: Forward detection
- \bar{q} at large x is small
\star Second term $\bar{q}_{b}\left(x_{b}\right) q_{t}\left(x_{t}\right)$ can be ignored
SeaQuest acceptance
- Access sea-antiquarks in target proton

Physics Topics

	Quarks			-Mulders
	Unpolarized	Longitudinally Polarized	Transversally Polarized	
N	$\cup f_{1} \bigcirc$		$h_{1}^{1} \text { (1)-(A) Boe }$	
u	L	$g_{1 L} \Theta \rightarrow-\Theta$	$h_{1 L}^{1}$ (2)	
e o n	${ }^{\circ} f_{1 T}^{\perp} \odot-\bigodot^{\perp}$	$g_{1 T}^{\perp} \stackrel{\wedge}{\oplus}-\stackrel{\wedge}{\ominus}$	$\begin{array}{ll} h_{1 T} & \stackrel{4}{+9}-\stackrel{4}{+} \\ h^{\perp} & 4 \end{array}$	

- SeaQuest (Unpolarized Drell-Yan)
- Antiquark flavor asymmetry (PDFs)
- Drell-Yan angular distribution (Boer-Mulders Function)
- SpinQuest (Polarized Drell-Yan)
- Single spin asymmetry (Sivers Function)

2.Recent Progress on SeaQuest Analyses

Los Alamos
 NATIONAL LABORATORY
 Antiquark Flavor Asymmetry

- Gluon splitting (perturbative QCD)

$$
\bar{u}(x)=\bar{d}(x), \int_{0}^{1} d x \bar{u}(x)=\int_{0}^{1} d x \bar{d}(x)
$$

- Gottfried sum rule: PRL 18 (1967) 1174
$S_{G}=\int d x \frac{F_{2}^{p}-F_{2}^{n}}{x}=\frac{1}{3}+\frac{2}{3} \int_{0}^{1} d x(\bar{u}(x)-\bar{d}(x))=\frac{1}{3}$
- NMC Experiment (DIS) @ CERN
$S_{G}=0.235 \pm 0.026<1 / 3$
$\rightarrow \int_{0}^{1} \bar{d}(x) d x-\int_{0}^{1} \bar{u}(x) d x=0.147 \pm 0.039$
- NA51 (Drell-Yan) @ CERN: $\bar{d} / \bar{u} \sim 1.7$
- E866 Experiment (Drell-Yan) @ Fermilab
x-dependence of $\bar{d} / \bar{u} @ 0.015<x<0.35$
- Significant Flavor Asymmetry $\bar{d} / \bar{u} \sim 1.7 @ x \sim 0.2$
- $\bar{d} / \bar{u}<1.0$ @ $x \sim 0.3$?? with large statistical uncertainty

Theoretical Models

- Pauli blocking - Only a few \%
- Meson Cloud Model $-\bar{d} / \bar{u}>1.0$
- Statistical Model - $\bar{d} / \bar{u}>1.0$

- LosAlamos Measurement

- Cross section ratio of p-d to p-p Drell-Yan process

$$
\left.\frac{1}{2} \frac{\sigma^{p d}}{\sigma^{p p}} \approx \frac{1}{2}\left[1+\frac{\bar{d}\left(x_{t}\right)}{\bar{u}\left(x_{t}\right)}\right]\right|_{x_{b} \gg x_{t}}
$$

- Measure p-d and p-p Drell-Yan dimuons
- Extract cross section ratio
- Convert cross section ratio to antiquark flavor asymmetry \bar{d} / \bar{u}
- Dimuon mass distribution fitted ${ }_{x 10^{3}}$ with estimated components
- Well fitted:

Detectors \& reconstruction work as expected

- Drell-Yan dimuons:

Mass > $4.5 \mathrm{GeV} / c^{2}$

LosAlamos Proton antiquark flavor asymmetry \bar{d} / \bar{u}

February 2021: The asymmetry of antimatter in the proton
Nature 590, 561 (2021)

- Antiquark flavor asymmetry \bar{d} / \bar{u} (antiquark PDF) of the proton at large $x(0.13<x<0.45)$
- $\bar{d} / \bar{u}>1.0$ in all measured ranges

Los Alamos
 Two M ethods Comparison

- Intensity-Extrapolation M ethod (Nature)
- Extrapolate the cross-section ratio to zero-intensity
* Suppose no background and rate dependence at zerointensity

A Anonos Another \bar{l} / \bar{u} paper

- Submitted to Phys. Rev. C. (https://arxiv.org/abs/2212.12160)
- Cross-check with another method and analysis details
- Results from two methods agree well
- LosAlamos Angular distribution of Drell-Yan
- Collins-Soper frame
- Virtual photon rest frame
- θ : polar angle of positive lepton
- ϕ : azimuthal angle of positive lepton
- Drell-Yan cross section

$\frac{d \sigma}{d \Omega} \propto 1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi$
- Naively, $\lambda=1, \mu=\nu=0\left(d \sigma \propto 1+\cos ^{2} \theta\right)$ at leading order
\star No transverse momentum on quarks
\star No gluon emission
- NLO: $\lambda \neq 1, \mu, \nu \neq 0$, but λ and ν still satisfy $1-\lambda=2 \nu$ (Lam-Tung relation)
- Lam-Tung relation
- Analogue of Callan-Gross relation (scattering of spin $1 / 2$ particles)
- Satisfied when the quark-antiquark axis is coplanar to hadron plane

LosAlamos Past Experiments

- NA10 (CERN), E615 (Fermilab)
- $\pi^{-}(\bar{u} d)+\mathrm{W}$
- NA10: 194 GeV , E615: 252 GeV beam
- L-T violation @ large p_{T}
- Strong p_{T} dependence of ν
- E866 (Fermilab)
- p+d (p+p), 800 GeV beam
- Smaller L-T violation than π beam experiments
- Weak p_{T} dependence of ν

Size of L-T violation depends on beam type
Boer-Mulders function h_{1}^{\perp} :

$$
\nu / 2 \propto h_{1, \text { beam }}^{\perp} h_{1, \text { target }}^{\perp}
$$

Small B-M of sea quark \rightarrow Small ν in P-beam

Phys. Rev. Lett. 99, 082301, (2007) ${ }_{15}$

GosAlamos Preliminary Results

SeaQuest: 120 GeV proton beam E866 : 800 GeV proton beam

E615 : $252 \mathrm{GeV} \pi^{-}$beam
NA10 : $194 \mathrm{GeV} \pi^{-}$beam

- The SeaQuest ν result is larger than E866 p-p results.
- March 2023
- Similar level as pion-induced Drell-Yan results.
- Further analysis with full data will give accurate results.
- p-d analysis will also be performed.

LOS Alamos

 Orbital Angular Momentum

 Orbital Angular Momentum}

- Is the π cloud model the cause of \bar{d} / \bar{u} asymmetry?
- $|p\rangle=\alpha\left|p_{0}\right\rangle+\beta\left|N \pi^{+}\right\rangle+\gamma\left|\Delta^{++} \pi^{-}\right\rangle+\cdots$
\star Superposition of baryon-meson state $\star \bar{d}$ is in π^{+}of $\left|N \pi^{+}\right\rangle$
\rightarrow Naively imagine that π^{+}floats around the neutron
$\star \bar{u}$ is in π^{-}of $\left|\Delta^{++} \pi^{-}\right\rangle$
- The orbital angular momentum of antiquarks should be large

The source of the flavor asymmetry can be investigated by measuring the contribution of OAM to proton spin Non-zero Sivers function \rightarrow Non-zero OAM

-osAlamos SpinQuest Experiment

- Sivers asymmetry is accessible by polarized Drell-Yan process
- First accurate measurement of antiquarks Sivers function
- Difference from SeaQuest: Polarized target instead of unpolarized target - $\mathrm{NH}_{3}, \mathrm{ND}_{3}$
- Dynamic nuclear polarization
- 80-90\% polarization $\left(\mathrm{NH}_{3}\right)$
- Polarization flips every 8hrs

SpinQuest Projection

- Single spin asymmetry A_{N}
- $0.1<x_{\text {target }}<0.3$
- Accuracy: $\delta_{A_{N}} \sim 0.04$
- Current Status:
- Polarized targets and detectors are ready for the data acquisition
- Beam commissioning will start late this year
- 2-year data acquisition is planned

Summary

- The sea-quarks and antiquarks structure of the proton is probed by Drell-Yan process accurately.
- Access antiquark PDFs (SeaQuest)
$\star \bar{d} / \bar{u}$ results were published in Nature.
\star Two methods comparison and analyses details are discussed in a new long paper. They agree really well.
$\star \bar{d} / \bar{u}>1.0$ in all measured ranges.
- Access sea-quark Boer-Mulders function (SeaQuest)
\star Released the SeaQuest preliminary results (μ and ν), and large ν is obtained.
\star Further investigation toward final results.
- Access antiquark Sivers function (SpinQuest)
\star Contribution of antiquarks OAM to the proton spin.
\star First direct measurement of antiquark Sivers function.
* Beam commissioning will start late this year

CosAamos Antiquarks PDFs

- Gluon splitting: Flavor Independent

$$
\bar{u}=\bar{d}
$$

- Gottfried sum rule: PRL 18 (1967) 1174

$$
\begin{aligned}
& S_{G}=\int_{0}^{1} d x \frac{F_{2}^{p}-F_{2}^{n}}{x} \\
& =\frac{1}{3}+\frac{2}{3} \int_{0}^{1} d x(\bar{u}(x)-\bar{d}(x))=\frac{1}{3}=0 \operatorname{if} \bar{d}=\bar{u}
\end{aligned}
$$

- NMC Experiment (DIS) @ CERN $S_{G}=0.235 \pm 0.026<1 / 3$

$$
\rightarrow \int_{0}^{1} \bar{d}(x) d x>\int_{0}^{1} \bar{u}(x) d x
$$

anomex x-dependence

- NA51 Experiment (Drell-Yan) @ CERN x-dependence of $\bar{d} / \bar{u} @ x=0.17$
- Significant Flavor Asymmetry
$\bar{d} / \bar{u}=1.9 @ x=0.17$
- E866 Experiment (Drell-Yan) @ Fermilab x-dependence of $\bar{d} / \bar{u} @ 0.015<x<0.35$
- Significant Flavor Asymmetry $\bar{d} / \bar{u} \sim 1.7$ @ $x \sim 0.2$
- $\bar{d} / \bar{u}<1.0$ @ $x \sim 0.3$?? with large statistical uncertainty

E906/SeaQuest aims to measure \bar{d} / \bar{u} in a large and wide x range

- Ostalamos Models

- Pauli blocking: small effect (few \%)
- Pion Cloud model (Phys. Rev D 58 (1998) 092004)
- $|p\rangle=\left|p_{0}\right\rangle+\alpha\left|N(u d d) \pi^{+}(u \bar{d})\right\rangle+\beta \mid \Delta($ uии $\left.) \pi^{-}(\bar{u} d)\right\rangle+\gamma|\Lambda K\rangle+\cdots$
- $\alpha>\beta \rightarrow \bar{d}>\bar{u}$

- Statistical Parton Distributions (Nucl. Phys. A 948 (2016) 63)
- Parton distribution calculated under the assumption of
\star Quarks obey Fermi-Dirac function
\star Gluons obey Bose-Einstein function
- $\bar{d}>\bar{u}$

- Los Alamos
 NATIONAL LABORATORY

 Beam Intensity Dependence

 Beam Intensity Dependence}

- Cross section ratio ($\sigma^{p d} / 2 \sigma^{p p}$) has beam intensity dependence
- Higher beam intensity \rightarrow More hits on detectors
\star Random background
« Lower reconstruction efficiency
- Instead of figuring out the effect separately, fit [Cross section ratio] vs [Beam Intensity] as a function of beam intensity (extrapolation method)

$$
f(I)=R_{x}+a I+b I^{2}
$$

Los Alamos
 Proton antiquark flavor asymmetry \bar{d} / \bar{u}

February 2021: The asymmetry of antimatter in the proton
Nature 590, 561 (2021)

- Antiquark flavor asymmetry \bar{d} / \bar{u} (antiquark PDF) of the proton at large $x(0.13<x<0.45)$
- $\bar{d} / \bar{u}>1.0$ in all measured range

CosAlamos Lam-Tung violation

- NA10 (CERN), E615 (Fermilab)
- $\pi^{-}(\bar{u} d)+\mathrm{W}$
- NA10: 194 GeV , E615: 252 GeV beam
- L-T violation @ large p_{T}
- E866 (Fermilab)
- p+d (p+p), 800 GeV beam
- Smaller L-T violation than π beam experiments

Size of L-T violation depends on beam type

Phys. Rev. Lett. 99, 082301, $(2007)_{28}$

Los Alamos
 Boer-Mulders function

- Boer-Mulders function and ν
- $\nu / 2 \propto h_{1}^{\perp}$ (beam) h_{1}^{\perp} (target)
- B-M function of sea quarks doesn't have to be the same as that of valence quarks
- π beam: antiquark as valence quark, valence quark-valence antiquark reaction is dominant
- proton beam: no antiquarks as valence quarks, sea quarks are always involved in the reaction

L-T violation and ν depend on beam type
$\rightarrow B-M$ is one of the candidates of the cause
Phys. Rev. Lett. 99, 082301, $(2007)_{29}$

Motivation of angular distribution measurement by SeaQuest

- Angular distribution results by fixed-target x proton beam are only by E866 at this present
- SeaQuest will give another set of results
- Different kinematics of E866
- Gives Boer-Mulders function at a larger x region
- Full ϕ range measurement $\frac{d \sigma}{d \Omega} \propto 1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi$
- Suitable to extract μ and ν
- λ is currently fixed to 1.0
- Baseline of E1039
- E1039: polarized targets SeaQuest: unpolarized targets

荘解sid Analysis Procedure

- Prepare correction factors - 2-dimensional histograms
- Accepted simulation / 4pi simulation - acceptance factor
- Realistic simulation / accepted simulation - reconstruction efficiency factor
- 2-dimensional un-binned p-p data
- p-p data / acceptance factor / reconstruction efficiency factor
- Subtract background from p-p data
- Fit with
$A \times\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)$
- $\lambda=1$ (FIXED) and extracted μ and ν

See tios Condition of Lam-Tung Relation

- Introduce quark plane in CollinsSoper frame
- θ_{1} : polar angle of quark
- ϕ_{1} : azimuthal angle of quark
- Lam-Tung relation:
- $\left\langle\sin ^{2} \theta_{1}\right\rangle=\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle$
- Lam-Tung relation is satisfied when $\phi_{1}=0$
\rightarrow Quark plane and hadron plane are common

Seat

SeaQuest: 120 GeV proton beam E866 : 800 GeV proton beam

- μ is consistent with 0.0 within the uncertainty.
- Consistent with E866 p-p results.

E906 Preliminary Results

SeaQuest: 120 GeV proton beam E866 : 800 GeV proton beam

- Non-zero ν is obtained.

Seatyinit Preliminary Results

SeaQuest: 120 GeV proton beam

- SeaQuest provides the data at a large x_{2} range
- SeaQuest p+p 120 GeV , NLO Drell-Yan

PHYS. REV. D 99, 014032 (2019)

- Boer-Mulders function is not included (pure pQCD)
- Large ν is expected even without Boer-Mulders function
- Difference between experimental results and pQCD results is important

Proton Spin Puzzle

 spin of quarks and antiquarks ~25\%
EMC at CERN (1989)

Orbital Angular Momentum

TMDs

		Quarks		
		Unpolarized	Longitudinally Polarized	Transversally Polarized
Nucleon	U	$f_{1} \bigcirc$		h_{1}^{\perp} (1) - (1)
	L		$g_{1 L} \Theta \rightarrow-\Theta$	$h_{1 L}^{\perp}$ (2) \rightarrow -
	T	$f_{1 T}^{\perp} \odot \stackrel{\wedge}{\circ}_{\ominus}^{\text {Sivers }}$	$g_{1 T}^{\perp} \stackrel{\perp}{\oplus}-\stackrel{\wedge}{\oplus}$	

- Sivers function

- Transversely polarized target and unpolarized beam
- Represent the relation between quark transverse momentum and nucleon spin
- The non-zero Sivers function indicates the non-zero orbital motion of the parton
\star Orbital angular momentum contribution on the proton spin

Sivers Effect

- Demonstration of Sivers effect at $x=0.1$
- The transverse momentum distribution is distorted due to the Sivers function (Sivers effect)

Measurements of Sivers Function

- Global analysis results of the experimental data
- HERMES, COMPASS, JLab
- Sivers functions of u and d quarks are non-zero
- Contribute to the proton spin
- Antiquarks Sivers functions are zero?
- Reveal by the direct measurement - Drell-Yan process

Sign Change of Sivers Asymmetry

- COMPASS has measured the Sivers asymmetry in Drell-Yan and indicated the sign of the asymmetry is opposite of that of SIDIS.
- Sign change of Sivers asymmetry of antiquarks may be investigated with SpinQuest results and future experiments results.

