Hadron spectroscopy at BESI

Beijiang Liu

Institute of High Energy Physics, Chinese Academy of Sciences (On behalf of the BESIII collaboration)

International Workshop on Hadron Structure and Spectroscopy (IWHSS-2023), June 26-28, 2023, Prague

QCD exotics: configurations beyond QM

Hadron spectroscopy

- How does QCD give rise to hadrons?
 - Quark model seems to work really well. Why?
- Key things to search for: additional degree of freedom
 - Strong evidences for multi-quark in heavy quark sector
 - Evidence for gluonic excitations remains sparse
- Role of gluons:
 - Gluons mediate the strong force
 - Hadron constituent: Mass? Quantum numbers? ...
 - Gluons' unique self-interacting property
 - \rightarrow New form of matter: glueballs, hybrids
 - Gluonic Excitations provide measurements of the QCD potential

Critical to confinement and mass dynamical generation

World's largest $\tau-charm$ data sets in e^+e^- annihilation

Rich physics programs:

- light hadron spectroscopy & decays,
- charmonium spectroscopy,
- charm physics,
- precision measurements (R-value, TFF,)

Charmonium-like states

- Conventional cc meson fit well with potential model
- Abundance of new states with various probes
 - *b*-hadron decays
 - hadron/heavy-ion collisions
 - γγ processes
 - e^+e^- collisions
 - BESIII: dominant for vectors and states produced from vector decays

Vector states: Y(4260) \rightarrow new Y states

- Y(4260) firstly seen by BaBar
 - Inconsistent with simple $c\overline{c}$ scenario
 - Candidates for exotics:
 - Hybrid (gcc)?
 - Hadronic molecule ?
 - Tetraquark ?
- Afterwards splits into Y(4230) and an additional resonance by BESIII

Y states

Additional structure at ~4.5 GeV (3 σ)

7

$$e^+e^- \rightarrow K^+K^-J/\psi$$
 CPC 46, 111002 (2022)

Data samples from 4.13 to 4.60 GeV(15.6 fb⁻¹)

Y(4230) and Y(4500) observed (29σ / 8σ)

$$e^+e^- \rightarrow K_S K_S J/\psi$$

PRD 107, 092005 (2023)

Data samples from 4.13 to 4.95 GeV(21.2 fb⁻¹)

Evidence for Y(4710) (4.0 σ)

8

Open-charm production

The lineshape of inclusive cross section agrees well with conventional charmonium

 $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$ arXiv:2305.10789

$$e^+e^- \to D^{*0}D^{*-}\pi^+ + c.c.$$

$$e^+e^- \rightarrow D^+D^-\pi^+\pi^-$$

PRL 130, 121901 (2023)

PRD 106, 052012 (2022)

Y(4230):

- > M = $(4209.6 \pm 4.7 \pm 5.9)$ MeV/c²
- \succ $\Gamma = (81.6 \pm 17.8 \pm 9.0) \text{ MeV}$

Y(4500):

M = (4469.1 ±26.2 ±3.6) MeV/c² Γ = (81.6 ±17.8 ±9.0) MeV

Y(4660):

> M = (4675.3 $\pm 29.5 \pm 3.5$) MeV/c² > Γ = (218.2 $\pm 72.9 \pm 9.3$) MeV

A resonance agrees with the ψ (4360) or Y(4390) state, with an evidence for an addition resonance of 4.2 σ

More information on X(3872)

Open-charm decays and radiative transitions

PRL 124, 242001 (2020)

A new production mechanism

 $e^+e^- \rightarrow \omega X(3872)$ at $E_{\rm CM}$ between 4.66 and 4.95 GeV

mode	ratio	UL
$\gamma J/\psi$	0.79 ± 0.28	-
$\gamma\psi^\prime$	-0.03 ± 0.22	< 0.42
$\gamma D^0 ar{D^0}$	0.54 ± 0.48	< 1.58
$\pi^0 D^0 ar{D^0}$	-0.13 ± 0.47	< 1.16
$D^{*0}\bar{D^0} + c.c.$	11.77 ± 3.09	-
$\gamma D^+ D^-$	$0.00\substack{+0.48\\-0.00}$	< 0.99
$\omega J/\psi$	$1.6^{+0.4}_{-0.3} \pm 0.2$ [18]	-
$\pi^0 \chi_{c1}$	$0.88^{+0.33}_{-0.27} \pm 0.10$ [31]	-

PRL 130, 151904 (2023)

A coupled channel analysis of the X(3872) lineshape $e^+e^- \rightarrow \gamma X(3872), X(3872) \rightarrow D^0 \overline{D}^0 \pi^0 \text{ and } \pi^+\pi^- J/\psi$

The Zc Family at BESIII

I = 1 $Z_c(3900)$ near $D\overline{D^*}$ threshold I = 1 $Z_c(4020)$ near $D^*\overline{D^*}$ threshold

 $e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

 $e^+e^- \to K_{\rm S}(D_{\rm s}^-D^{*+} + D_{\rm s}^{*-}D^+)$

PRL 129, 112003 (2022)

Light Hadron Spectroscopy

Glueballs

• Low-lying glueballs with ordinary J^{PC} \rightarrow mixing with $q\bar{q}$ mesons

> Non-qq nature difficult to be established: *Cryptoexotic*

- Supernumerary states
- Unusual pattern of production and decay
- Scalar glueball is expected to have a large production in J/ψ radiative decays: $B(J/\psi \rightarrow \gamma G_{0+}) = 3.8(9) \times 10^{-3}$ by Lattice QCD
 - Observed $B(J/\psi \rightarrow \gamma f_0(1710))$ is x10 larger than $f_0(1500)$
 - > BESIII: $f_0(1710)$ largely overlapped with scalar glueball

BESIII PRD 87 092009 (2013) BESIII PRD 92 052003 (2015) BESIII PRD 98 072003 (2018)

phenomenology studies of coupled channel analysis with BESIII results: PLB 816, 136227 (2021), EPJC 82, 80 (2022)

More scalars

 $f_0(1800)$

PRD 87, 032008(2013)

$$J/\psi \rightarrow \gamma \omega \phi$$
 (DOZI)

$a_0(1710)/a_0(1817)$? PRD105, L051103 (2022) $D_s^+ \to K_S^0 K_S^0 \pi^+$ Events / (20 MeV/c²) 07 09 09 09 🗕 Data (a) — Total fit ····· K⁰_SK^{*}(892)⁺ S(1710)π⁺ 1.8 1.6 1.2 1.4 $M_{K^{\theta}_{S}K^{\theta}_{S}}(\mathrm{GeV}/c^{2})$ PRL129, 182001 (2022) $D_s^+ \rightarrow K^0{}_S K^+ \pi^0$ Events / (20 MeV/c²) 05 00 $K^+\overline{K}^*(892)^0$ (a) $K_{s}^{0}K^{*}(892)^{+}$ $-K^{+}\overline{K}^{*}(1410)^{0}$ $a_0(980)^+\pi^0$ $a_0(1817)^+\pi^0$

1.2

1.4

 $M_{K_c^{\theta}K^+}$ (GeV/ c^2)

1.6

1.8

Tensor glueball candidate

 $egin{aligned} \Gamma(J/\psi o \gamma G_{2^+}) &= 1.01(22) keV \ \Gamma(J/\psi o \gamma G_{2^+})/\Gamma_{tot} &= 1.1 imes 10^{-2} \end{aligned}$

CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

Experimental results

 $Br(J/\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \varphi \varphi) = (1.91 \pm 0.14^{+0.72}_{-0.73}) \times 10^{-4}$ BESIII PRD 93, 112011 (2016)

$$Br(J/\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma K_s K_s) = \left(5.54^{+0.34+3.82}_{-0.40-1.49}\right) \times 10^{-5}$$

BESIII PRD 98,072003 (2018)

 $Br(J/\psi \to \gamma f_2(2340) \to \gamma \eta' \eta') = \left(8.67 \pm 0.70^{+0.16}_{-1.67}\right) \times 10^{-6}$

BESIII PRD 105,072002 (2022)

 $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ stated in π^-p reactions are observed with a strong production of $f_2(2340)$ Consist with WA102@CERN

It is desirable to search for more decay modes

Light hadrons with exotic quantum numbers

- Unambiguous signature for exotics
 - Light Flavor-exotic hard to establish
 - Efforts concentrate on Spin-exotic
 - Forbidden for $q\overline{q}$: $J^{PC} = 0^{--}$, even⁺⁻, odd⁻⁺

Various probes:

- Hadroproduction: E852, VES, COMPASS, GAMS
- * $p\overline{p}$ annihilation: Crystal Barrel, OBELIX
- Photoproduction: GlueX(2017-), CLAS

Spin-exotic mesons

• Only 3 candidates so far: All 1⁻⁺ isovectors

- Experimental and interpretational issues
- $\pi_1(1400) \& \pi_1(1600)$ can be explained as one pole
- Most popular interpretation: hybrid

Confirmed by EPJC 81, 1056 (2021)

Lattice QCD Predictions:

 1^{-+} Hybrids

- Isoscalar 1⁻⁺ is critical to establish the hybrid nonet
 - Can be produced in the gluon-rich charmonium decays
 - Can decay to $\eta\eta'$ in P-wave

PRD 83,014021 (2011), PRD 83,014006 (2011), EP.J.P 135, 945(2020)

 \rightarrow Search for η₁ (1⁻⁺) in J/ψ \rightarrow γηη'

$$\pi_{1} I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

$$K_{1} I^{G}(J^{P}) = \frac{1}{2}^{-}(1^{-})$$

$$\eta'_{1} I^{G}(J^{PC}) = 0^{+}(1^{-+})$$

Observation of An Isoscalar 1⁻⁺ State $\eta_1(1855)$ in J/ $\psi \rightarrow \gamma \eta \eta'$

- The η' is reconstructed from $\gamma\pi^+\pi^-$ & $\eta\pi^+\pi^-,\eta$ from $\gamma\gamma$
- Partial wave analysis of $J/\psi \to \gamma \eta \eta'$
 - Quasi two-body decay amplitudes in the sequential decay processes $J/\psi \rightarrow \gamma X, X \rightarrow \eta \eta'$ and $J/\psi \rightarrow \eta X, X \rightarrow \gamma \eta'$ and $J/\psi \rightarrow \eta' X, X \rightarrow \gamma \eta$ are constructed using the covariant tensor formalism and GPUPWA*

*World's first PWA framework with GPU acceleration

• An isoscalar 1^{-+} , $\eta_1(1855)$, has been observed in $J/\psi \to \gamma \eta \eta'$ (>19 σ)

$$\begin{split} \mathsf{M} &= \left(1855 \pm 9^{+6}_{-1}\right) \mathsf{MeV}/c^2 \text{, } \Gamma = \left(188 \pm 18^{+3}_{-8}\right) \mathsf{MeV}/c^2 \\ \mathsf{B}(\mathsf{J}/\psi \to \gamma \eta_1(1855) \to \gamma \eta \eta') &= \left(2.\,70 \pm 0.\,41^{+0.16}_{-0.35}\right) \times 10^{-6} \end{split}$$

- Mass is consistent with LQCD calculation for the 1^{-+} hybrid (1.7~2.1 GeV/c²)
 - Hybrid? Molecule? Tetraquark?

Phys. Rev. Lett. 129, 192002 (2022), Phys. Rev. D 106, 072012 (2022)

Observation of An Isoscalar 1⁻⁺ State $\eta_1(1855)$ in $J/\psi \rightarrow \gamma \eta \eta'$

- Angular distribution as a function of $M(\eta\eta')$ expressed model-independently

$$\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0(\cos\theta_{\eta}^i)$$

Related to the spin-0(S), spin-1(P), spin-2(D) amplitudes in ηη' by:

 $\sqrt{4\pi} \langle Y_0^0 \rangle = S_0^2 + P_0^2 + P_1^2 + D_0^2 + D_1^2 + D_2^2,$

 $\overline{\langle 4\pi}\langle Y_1^0 \rangle = 2S_0 P_0 \cos \phi_{P_0} + \frac{2}{\sqrt{5}} (2P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) + \sqrt{3}P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1})),$

$$\sqrt{4\pi} \langle Y_2^0 \rangle = \frac{1}{7\sqrt{5}} (14P_0^2 - 7P_1^2 + 10D_0^2 + 5D_1^2 - 10D_2^2) + 2S_0 D_0 \cos \phi_{D_0}$$
$$\sqrt{4\pi} \langle Y_3^0 \rangle = \frac{6}{\sqrt{35}} (\sqrt{3}P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) - P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1})),$$

$$\sqrt{4\pi}\langle Y_4^0 \rangle = \frac{1}{7}(6D_0^2 - 4D_1^2 + D_2^2).$$

• Narrow structure in $\langle Y_1^0 \rangle$

 \succ Cannot be described by resonances in $\gamma\eta(\eta')$

• $\eta_1(1855) \rightarrow \eta\eta'$ needed

2.5

 $M(\eta\eta')(GeV/c^2)$

 $M(m')(GeV/c^2)$

3

2

1.5

1.5

Discussions about $f_0(1500) \& f_0(1710)$ in $J/\psi \rightarrow \gamma \eta \eta'$

• Significant $f_0(1500)$

$$\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$$

consistent with PDG

• Absence of $f_0(1710)$

 $\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 2.87 \times 10^{-3} @90\% \text{ C. L.}$

- Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar glueball –
 - Scalar glueball expected to be suppressed $B(G \to \eta \eta')/B(G \to \pi \pi) < 0.04$

Decay mode	Resonance	$M~({\rm MeV}/c^2)$	$\Gamma ({\rm MeV})$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}~(MeV)$	B.F. (×10 ⁻⁵)	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81 \pm 0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1 <i>σ</i>
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6 <i>σ</i>
$\psi/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312 \pm 7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2 <i>σ</i>
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4 <i>σ</i>
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7 <i>σ</i>
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4 <i>σ</i>
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6 σ
	0 ⁺⁺ PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7 <i>σ</i>
$/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9 <i>σ</i>
						47	

10B J/ψ

A New State X(2600) Observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

PRL 129, 042001 (2022)

- To study X(2600) parameters, a simultaneous fit to η'π⁺π⁻ and π⁺π⁻ is performed
- The structure in $M(\pi^+\pi^-)$ well described with the interference between $f_0(1500)$ and X(1540)

Summary

- Exciting results from new J/ψ and XYZ data are presented
 - Mapping out non-trivial structures of Y states
 - Further information on X(3872)
 - The Z_c family has expanded with the strange Z_{cs}
 - Spin exotics state: $\eta_1(1855)$
 - New state X(2600) in J/ψ radiative decays
- Data with unprecedented statistical accuracy from BESIII provides great opportunities to study QCD exotics. Will continue to run until ~2030
- BESIII is in good status, inner detector upgrade in progress; High-lumi. fine scan between 3.8 GeV and 5.6 GeV is planned
 - **BEPCII-U:** 3x upgrade on luminosity; Ecms expanded to 5.6 GeV (summer 2024)

Thank you for your attention

Beijing Spectrometer(**BESIII**) Experiment

- Main Drift Chamber (MDC)
 - σ(p)/p = 0.5%
 - $\sigma_{dE/dX} = 5.0\%$

- Time-of-flight (TOF)
 - σ(t) = 68ps (barrel)
 - σ(t) = 65ps (endcap)
- Electro Magnetic Calorimeter (EMC)
 - σ(E)/E = 2.5%
 - $\sigma_{z,\phi}(E) = 0.5 0.7 \text{ cm}$

RPC MUON Detector
 σ(xy) < 2 cm

Beam Energy: 2.35GeV

	BEPCII	BEPCII-U
Lum [10 ³² cm ⁻² s ⁻¹]	3.5	11
<mark>β</mark> * [cm]	1.5	1.3
Bunch Current [mA]	7.1	7.5
Bunch Num	56	120
SR Power [kW]	110	250
$\xi_{y,\mathrm{lum}}$	0.029	0.036
Emittance [nmrad]	147	152
Coupling [%]	0.53	0.35
Bucket Height	0.0069	0.011
$\sigma_{\! z,0}$ [cm]	1.54	1.04
$\sigma_{\! z}$ [cm]	1.69	1.3
RF Voltage	1.6 MV	3.3 MV

BEPCII-U vs **BEPCII**

- Luminosity is increased by a factor of 3 @2.35GeV
- Maximum beam energy is increased from 2.1GeV to 2.8GeV.

PDG 2022 ψ States

Lineshape parameterization

$$\frac{d\operatorname{Br}(D^{0}\overline{D}^{0}\pi^{0})}{dE} = \boldsymbol{B}\frac{1}{2\pi} \times \frac{\boldsymbol{g} \ast k_{\operatorname{eff}}(E)}{|D(E)|^{2}} \times \operatorname{Br}(D^{\ast 0} \to D^{0}\pi^{0})$$
$$\frac{d\operatorname{Br}(\pi^{+}\pi^{-}J/\psi)}{dE} = \boldsymbol{B}\frac{1}{2\pi} \times \frac{\Gamma_{\pi^{+}\pi^{-}}J/\psi}{|D(E)|^{2}}$$

[C. Hanhart, PRD 81, 094028 (2010)]

$$\frac{D^*}{\overline{D}} \frac{\Gamma(E)}{\overline{D}}$$

$$D(E) = E - \frac{E_X}{2} + \frac{1}{2}g * \left(\kappa_{\text{eff}}(E) + ik_{\text{eff}}(E) + \kappa_{\text{eff}}^c(E) + ik_{\text{eff}}^c(E)\right) + \frac{i}{2}\Gamma_0$$

$$\begin{aligned} k_{\rm eff}(E) &= \sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} + E - E_R} \\ \kappa_{\rm eff}(E) &= -\sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} - E + E_R} \\ &+ \sqrt{\mu_p} \sqrt{\sqrt{(E_X - E_R)^2 + \Gamma_X^2/4} - E_X + E_R} \\ \Gamma_0 &= \Gamma_{\pi} + \pi^- J/\psi + \Gamma_{known} + \Gamma_{unknown} \\ E_X &= M_X - (m_{D^0} + m_{\overline{D}^0} + m_{\pi^0}) \\ B_{:} \text{ the global normalization} \end{aligned}$$

* superscript c: charged $D^{*+}D^{-}$

* Due to the limited statistics, $\Gamma_{unknown}/\Gamma_{\pi^+\pi^- J/\psi}$ is fixed [Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003]

Key features:

- Model independent
- Including the $D^*\overline{D}$ self energy terms
- Including the width of D^*
- Including the coupled channel effect
- Fit parameters: g, $\Gamma_{\pi^+\pi^- J/\psi}$, M_X

Correlate the expected numbers of signals

 $2 Im[D(E)] = g * (k_{eff} + k_{eff}^{c}) + \Gamma_{\pi^{+}\pi^{-}J/\psi} + \Gamma_{known} + \Gamma_{unknown}$

The produced numbers of events in a fitting range (E_{min}, E_{max}) are:

$$\mu_{X(3872)}^{prod} = \int_{E_{min}}^{E_{max}} dE \; \frac{B}{2\pi} * \frac{2 \; Im[D(E)]}{|D(E)|^2}$$
$$\mu_{D^0 \overline{D}{}^0 \pi^0}^{prod} = Br(D^{*0} \to D^0 \pi^0) \times \int_{E_{min}}^{E_{max}} dE \; \frac{B}{2\pi} * \frac{g * k_{eff}}{|D(E)|^2}$$
$$\mu_{\pi^+ \pi^- J/\psi}^{prod} = \int_{E_{min}}^{E_{max}} dE \; \frac{B}{2\pi} * \frac{\Gamma_{\pi^+ \pi^- J/\psi}}{|D(E)|^2}$$

Only one new parameter $\mu_{X(3872)}^{prod}$

$$\mu_{D^0\overline{D}{}^0\pi^0} = \epsilon_{D^0\overline{D}{}^0\pi^0} \times R_{D^0\overline{D}{}^0\pi^0} \times \mu_{X(3872)}^{prod}$$
$$\mu_{\pi^+\pi^-J/\psi} = \epsilon_{\pi^+\pi^-J/\psi} \times R_{\pi^+\pi^-J/\psi} \times \mu_{X(3872)}^{prod}$$

$$\epsilon : \text{ efficiency and branching fractions correction}}$$

$$R_{D^0 \overline{D}{}^0 \pi^0} = \text{Br} \left(D^{*0} \to D^0 \pi^0 \right) \times \frac{\int_{E_{min}}^{E_{max}} dE \frac{g * k_{eff}}{|D(E)|^2}}{\int_{E_{min}}^{E_{max}} dE \frac{2 Im[D(E)]}{|D(E)|^2}}$$

$$R_{\pi^+ \pi^- J/\psi} = \frac{\int_{E_{min}}^{E_{max}} dE \frac{\Gamma_{\pi^+ \pi^- J/\psi}}{|D(E)|^2}}{\int_{E_{min}}^{E_{max}} dE \frac{2 Im[D(E)]}{|D(E)|^2}}$$

Compare with LHCb

	LHCb	This work
g	$0.108 \pm 0.003 \substack{+0.005 \\ -0.006}$	$0.16 \pm 0.10^{+1.12}_{-0.11}$
$Re[E_I]$ [MeV]	7.10	$7.04 \pm 0.15^{+0.07}_{-0.08}$
$Im[E_I]$ [MeV]	-0.13	$-0.19 \pm 0.08 ^{+0.14}_{-0.19}$
$\frac{\Gamma(X(3872) \to \pi^+ \pi^- J/\psi)}{\Gamma(X(3872) \to D^0 \overline{D}^{*0})}$	0.11 🛨 0.03	$0.05 \pm 0.01 ^{+0.01}_{-0.02}$
FWHM (MeV)	$0.22^{+0.06}_{-0.08}^{+0.25}_{-0.17}$	$0.44_{-0.35}^{+0.13}{}_{-0.25}^{+0.38}$
Z	0.15	0.18

The inclusion of the D^+D^{*-} term in the model lengthens the tail of the lineshape in the $D^0\overline{D}{}^0\pi^0$ channel and results in a larger signal yield.

Lineshape parameterization

$$\frac{d\operatorname{Br}(D^{0}\overline{D}^{0}\pi^{0})}{dE} = B \frac{1}{2\pi} \times \frac{g * k_{\operatorname{eff}}(E)}{|D(E)|^{2}} \times \operatorname{Br}(D^{*0} \to D^{0}\pi^{0})$$
$$\frac{d\operatorname{Br}(\pi^{+}\pi^{-}J/\psi)}{dE} = B \frac{1}{2\pi} \times \frac{\Gamma_{\pi^{+}\pi^{-}}J/\psi}{|D(E)|^{2}}$$

[C. Hanhart, PRD 81, 094028 (2010)]

$$\frac{D^* \Gamma(E)}{\overline{D}}$$

$$\kappa_{\rm eff}(E) + ik_{\rm eff}(E)$$

$$D(E) = E - \frac{E_X}{2} + \frac{1}{2}g * \left(\kappa_{\text{eff}}(E) + ik_{\text{eff}}(E) + \kappa_{\text{eff}}^c(E) + ik_{\text{eff}}^c(E)\right) + \frac{i}{2}\Gamma_0$$

$$\begin{aligned} k_{\rm eff}(E) &= \sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} + E - E_R} \\ \kappa_{\rm eff}(E) &= -\sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} - E + E_R} \\ &+ \sqrt{\mu_p} \sqrt{\sqrt{(E_X - E_R)^2 + \Gamma_X^2/4} - E_X + E_R} \\ \Gamma_0 &= \Gamma_{\pi^+ \pi^- J/\psi} + \Gamma_{known} + \Gamma_{unknown} \\ E_X &= M_X - (m_{D^0} + m_{\overline{D}^0} + m_{\pi^0}) \\ \boldsymbol{B}: \text{ the global normalization} \end{aligned}$$

* superscript c: charged $D^{*+}D^{-}$

* Due to the limited statistics, $\Gamma_{unknown}/\Gamma_{\pi^+\pi^- J/\psi}$ is fixed [Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003]

Key features:

- Model independent
- Including the $D^*\overline{D}$ self energy terms
- Including the width of D^*
- Including the coupled channel effect
- Fit parameters: g, $\Gamma_{\pi^+\pi^- J/\psi}$, M_X

Correlate the expected numbers of signals

 $2 Im[D(E)] = g * (k_{eff} + k_{eff}^{c}) + \Gamma_{\pi^{+}\pi^{-}J/\psi} + \Gamma_{known} + \Gamma_{unknown}$

The produced numbers of events in a fitting range (E_{min}, E_{max}) are:

$$\mu_{X(3872)}^{prod} = \int_{E_{min}}^{E_{max}} dE \; \frac{B}{2\pi} * \frac{2 \; Im[D(E)]}{|D(E)|^2}$$
$$\mu_{D^0 \overline{D}{}^0 \pi^0}^{prod} = Br(D^{*0} \to D^0 \pi^0) \times \int_{E_{min}}^{E_{max}} dE \; \frac{B}{2\pi} * \frac{g * k_{eff}}{|D(E)|^2}$$
$$\mu_{\pi^+ \pi^- J/\psi}^{prod} = \int_{E_{min}}^{E_{max}} dE \; \frac{B}{2\pi} * \frac{\Gamma_{\pi^+ \pi^- J/\psi}}{|D(E)|^2}$$

Only one new parameter $\mu_{X(3872)}^{prod}$

$$\mu_{D^0\overline{D}{}^0\pi^0} = \epsilon_{D^0\overline{D}{}^0\pi^0} \times R_{D^0\overline{D}{}^0\pi^0} \times \mu_{X(3872)}^{prod}$$
$$\mu_{\pi^+\pi^-J/\psi} = \epsilon_{\pi^+\pi^-J/\psi} \times R_{\pi^+\pi^-J/\psi} \times \mu_{X(3872)}^{prod}$$

$$\epsilon : \text{ efficiency and branching fractions correction}}$$

$$R_{D^0 \overline{D}{}^0 \pi^0} = \text{Br}(D^{*0} \to D^0 \pi^0) \times \frac{\int_{E_{min}}^{E_{max}} dE \frac{g * k_{eff}}{|D(E)|^2}}{\int_{E_{min}}^{E_{max}} dE \frac{2 Im[D(E)]}{|D(E)|^2}}$$

$$R_{\pi^+ \pi^- J/\psi} = \frac{\int_{E_{min}}^{E_{max}} dE \frac{\Gamma_{\pi^+ \pi^- J/\psi}}{|D(E)|^2}}{\int_{E_{min}}^{E_{max}} dE \frac{2 Im[D(E)]}{|D(E)|^2}}$$

Compare with LHCb

	LHCb	This work
g	$0.108 \pm 0.003 \substack{+0.005 \\ -0.006}$	$0.16 \pm 0.10^{+1.12}_{-0.11}$
$Re[E_I]$ [MeV]	7.10	$7.04 \pm 0.15^{+0.07}_{-0.08}$
$Im[E_I]$ [MeV]	-0.13	$-0.19 \pm 0.08 ^{+0.14}_{-0.19}$
$\frac{\Gamma(X(3872) \to \pi^+ \pi^- J/\psi)}{\Gamma(X(3872) \to D^0 \overline{D}^{*0})}$	0.11 🛨 0.03	$0.05 \pm 0.01 ^{+0.01}_{-0.02}$
FWHM (MeV)	$0.22^{+0.06}_{-0.08}^{+0.25}_{-0.17}$	$0.44_{-0.35}^{+0.13}{}_{-0.25}^{+0.38}$
Z	0.15	0.18

The inclusion of the D^+D^{*-} term in the model lengthens the tail of the lineshape in the $D^0\overline{D}{}^0\pi^0$ channel and results in a larger signal yield.

Angular moments without contribution from D wave and F wave

The blue line becomes flat from a peak structure

Observation of X(1835), X(2120) and X(2370) in J/ ψ EM Dalitz Decays

 $J/\psi \rightarrow e^+e^-\pi^+\pi^-\eta'$

• Confirmation of X(1835), X(2120), X(2370) previously observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

10 billion *J/ψ* PRL 129 (2022) 2, 022002

reconstruct η' from $\gamma \pi^+ \pi^-$ (left) & $\eta (\rightarrow \gamma \gamma) \pi^+ \pi^-$ (right)

Observation of X(1835), X(2120) and X(2370) in J/ ψ EM Dalitz Decays $J/\psi \rightarrow e^+e^-\pi^+\pi^-\eta'$

• Measurement of the **Transition Form Factor** of $J/\psi \rightarrow e^+e^-X(1835)$

the structure-dependent partial width can be modified by transition form factor, which provides information of the EM structure

$$\frac{d\Gamma(J/\psi \to X(1835)e^+e^-)}{dq^2\Gamma(J/\psi \to X(1835)\gamma)} = |F(q^2)|^2 \times [QED(q^2)]$$
$$F(q^2) = \frac{1}{1 - q^2/\Lambda^2}$$
$$\Lambda = 1.75 \pm 0.29 \pm 0.05 \ GeV/c^2$$

$\psi_2(3823)$ -the $\psi(1^3D_2)$ state?

$$e^+e^- \rightarrow \psi_2(3823)\pi^+\pi^-$$
 , $\psi_2(3823) \rightarrow \gamma \chi_{c1}$

PRL 129, 103003(2022)

41

first observation of vector Y states decaying to D-wave charmonium state

