Peter Hurck for the GlueX collaboration

Hadron spectroscopy at GlueX

International Workshop on Hadron Structure and Spectroscopy 2023 Czech Technical University, Prague

Introduction

- QCD gives rise to spectrum of hadrons
 - Many qq̄ and qqq states have been observed
 - *qqqqq, qqqqq, ...* are not forbidden!

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

... Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc...

Phys. Lett. 8 (1964) 214

Evidence exists for pentaquark states:

LHCb, Phys. Rev. Lett. 122, 222001

Hybrid mesons

- main objective for GlueX:
 Search and study of hybrid mesons
- * In quark model: $\vec{J} = \vec{L} + \vec{S}, P = (-1)^{L+1}, C = (-1)^{L+S}$

 \rightarrow <u>not</u> allowed: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$

* "Exotic" quantum numbers are "smoking gun" for something not being pure $q\bar{q}$

Light quark mesons from lattice QCD

hadspec collaboration

hadspec, Phys. Rev. D 88, 094505

Hybrid mesons - evidence

- * Experimental evidence for a 1^{-+} :
 - * $\pi_1(1400)$: GAMS, VES, E852, CBAR, COMPASS
 - * $\pi_1(1600)$: VES, E852, COMPASS
- * JPAC coupled channel fit to $\eta\pi$ and $\eta'\pi$ data from COMPASS

1⁻⁺ hybrid from lattice QCD

* LQCD indicates that $b_1\pi$ is the dominant decay mode

- Experimentally challenging
- * Start with $\eta \pi$, $\eta' \pi$
 - * Smaller expected branching ratio but large statistics
 - Narrow peaks and pseudo scalars

Towards hybrids at GlueX

- Photoproduction complementary to pion production
 - Utilize polarization to understand production mechanisms

- Study production mechanisms to inform choice of wave sets for PWA (beam asymmetries, spin density matrix elements)
- Reproduce previous results by COMPASS
 - Focus on $\eta\pi$ and $\eta'\pi$
- Work closely with theory colleagues to tackle model complexity

CEBAF at Jefferson Lab

GlueX experiment in Hall D

 tag electrons to determine photon energy produce linearly polarized photon beam via coherent bremsstrahlung on thin diamond

Acceptance:

 $\theta_{lab} \approx 1^{\circ} - 120^{\circ}$

- * Charged particles: $\sigma_p/p \approx 1\% 3\% (8\% 9\% \text{ very-forward high-momentum tracks})$
- Photons:

Towards a PWA in $\eta \pi^0$ - $a_2(1320)$ cross-section

- * First look at PWA in $\eta \pi^0$
- * Study $a_2(1320)$ cross-section
- * Positive helicity (natural exchange, e.g. ρ) dominates
- * a_2 predominantly D_2 wave, consistent with helicity=2 dominance at Belle $(\gamma \gamma \rightarrow \eta \pi^0)_{Belle, Phys. Rev. D 80, 032001}$

Mixed method: imposing BW shape on a_2 improves fit

* Set upper limit on $\pi_1(1600)$ using isospin separation, assume no I = 2

$$\sigma((\omega\pi\pi)^0)_{I=1} = \sigma(\omega\pi^+\pi^-) - 2\sigma(\omega\pi^0\pi^0)$$

•
$$\sigma((\omega\pi\pi)^{-})_{I=1} = \sigma(\omega\pi^{-}\pi^{0})$$

* Fit $\sigma(\omega \pi \pi)_{I=1}$ using known shapes for a_2 (PDG) and π_1 (JPAC)

 $\pi_1(1600)$ upper limits

- * Fix a_2 size to measured cross-section adjusted with known BR
- * π_1 BR from lattice

*

- * Only free parameter is π_1 normalisation!
- * π_1 upper limits similar in size to a_2 cross-sections

π_1 projections to $\eta\pi$ and $\eta'\pi$

$\Lambda(1405)$ line shape measurement

Excited
$$\Lambda$$
 with $J^P = \frac{1}{2}^{-1}$

- * $\Lambda(1405) \rightarrow \Sigma \pi$
- Previous measurements (e.g. COSY-Jülich or CLAS) show very clear non-Breit-Wigner line shape
- * Interpretation under active investigation
- Many theory models find two-pole structure: not just one state
- * Recent PDG addition: ** $\Lambda(1380)$

$\Lambda(1405)$ line shape measurement N

N. Wickramaarachchi (HYP2022)

$\Lambda(1405)$ line shape measurement

N. Wickramaarachchi

J/ψp

- * LHCb sees pentaquark signal in $\Lambda_b^0 \rightarrow J/\psi p K^-$
- GlueX can search for s-channel production

LHCb, Phys. Rev. Lett. 122, 222001

- Updated measurement:
 4x more stats
- * Dip at ~9 GeV has 2.6σ significance (with look-elsewhere-effect 1.4σ)
- * Improved model dependent P_c upper limits by ~30% previous: $RR(P(4312) \rightarrow I/mn) < 4.6\%$

 $BR(P_c(4312) \to J/\psi p) < 4.6\%$ $BR(P_c(4440) \to J/\psi p) < 2.3\%$ $BR(P_c(4457) \to J/\psi p) < 3.8\%$

- GlueX, Phys. Rev. Lett. **123**, 072001 **measure leptonic decay** $\gamma p \rightarrow J\psi p \rightarrow e^+e^-p$
- exclusive reaction
- * normalise cross-section to non-resonant e^+e^- production (Bethe-Heitler)

M.-L. Du et al. Deciphering the mechanism of near-threshold J/ψ photoproduction. Eur. Phys. J. C 80, 1053 (2020)

- Flattening of $d\sigma/dt$ in lowest ** energy range
- Indication of s- or u-channel . contribution?
- Need better understanding of production mechanism

GlueX, Phys. Rev. Lett. 123, 072001 arXiv:2304.03845

- Du et al. propose production through $\Lambda_c \bar{D}$ and $\Lambda_c \bar{D}^*$
- Generate cusp structures

Further analyses

Acknowledgments:

Summary

21

- GlueX has a unique data set with unprecedented statistical precision in its energy range
- Start with studying production mechanisms and develop PWA in parallel
- * $\pi_1(1600)$ upper limits, guide for future searches
- *J*/Ψ near threshold extends understanding of production mechanism
- Many more interesting analyses in the pipeline and room for other physics:
 - * Strangeonium, cascades, ALPs, ...
- Future and outlook:
 - Ongoing GlueX-II
 - * HI-GlueX, GlueX-24 (?)

